
AUTONOMOUS GENERATION OF ROBOT
BEHAVIOUR FOR EFFECTIVE TASK

EXECUTION

Zvezdan Lončarević

Doctoral Dissertation
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

Supervisor: Prof. Dr. Andrej Gams, Jožef Stefan International Postgraduate School,
Ljubljana, Slovenia

Evaluation Board:
Prof. Dr. Tadej Petrič, Chair, Jožef Stefan International Postgraduate School, Ljubljana,
Slovenia
Prof. Dr. Matjaž Mihelj, Member, Faculty of Electrical Engineering, Ljubljana, Slovenia
Prof. Dr. Mirko Raković, Member, Faculty of Technical Sciences, Novi Sad, Serbia

Zvezdan Lončarević

AUTONOMOUS GENERATION OF ROBOT BE-
HAVIOUR FOR EFFECTIVE TASK EXECUTION

Doctoral Dissertation

AVTONOMNO OBLIKOVANJE OBNAŠANJA ROBOTA
ZA UČINKOVITO IZVAJANJE NALOG

Doktorska disertacija

Supervisor: Prof. Dr. Andrej Gams

Ljubljana, Slovenia, October 2023

To my family and friends

vii

Acknowledgments

The research for this thesis was performed at the Department of Automatics, Biocybernet-
ics and Robotics, Jožef Stefan Institute. First, I would like to thank my thesis supervisor
Prof. Dr. Andrej Gams for his help and guidance during my studies. This research work
was also done in collaboration with Dr. Mihael Simonič and Dr. Rok Pahič and I would
like to thank them for their help. Together with Dr. Miha Deniša, Prof. Dr. Bojan Nemec
and Prof. Dr. Leon Žlajpah I owe them special gratitude for their help, support and advice
during the studies.

I want to thank the members of the evaluation board: Prof. Dr. Tadej Petrič, Prof. Dr.
Mirko Raković and Prof. Dr. Matjaž Mihelj for reviewing the manuscript and evaluating
the work of my thesis.

Finally, I would like to thank my family and friends for believing in me. Thank you
for your unconditional support and love through all the stages of my life and studies.
This research has received funding from the:
- Program group P2-0076 Automation, robotics and biocybernetics supported by the Slove-
nian Research Agency,
- GOSTOP program C3330-16-529000, co-financed by Slovenia and EU under ERDF,
- EU’s Horizon 2020 grant QU4LITY - Grant agreement No. 825030,
- Research grant Robot Textile and Fabric Inspection and Manipulation – RTFM (J2-4457)
by the Slovenian Research Agency,
- Deutsche Akademische Austauschdienst (DAAD) - Grant No. 57588366.

ix

Abstract

The pursuit of autonomous robot learning is aimed at enabling robots to seamlessly inte-
grate into our daily lives, enhancing our efficiency and convenience. On the other hand,
in the industrial sector, autonomous robot learning plays a vital role in keeping up with
the rapidly evolving market demands. As products and processes change swiftly, robots
equipped with autonomous learning capabilities can quickly adapt and optimize their per-
formance, leading to increased productivity and competitiveness.

In this thesis, robot behaviour generation is considered at different levels of complex-
ity. Initially, we address autonomous optimization methods, then progress to autonomous
adaptation, and finally explore the potential of fully autonomous behaviour generation.

Installation or even just modification of robot-supported production and quality inspec-
tion is a tedious process that usually requires human expert engagement. The resulting
parameters, e.g. robot velocities specified by an expert, are often subjective and subopti-
mal. That is why, in the first part of the thesis, we demonstrate an autonomous trajectory
optimization method for the repetitive task. We propose a new approach for specifying
visual inspection trajectories based on CAD models of workpieces to be inspected. The
expert is required only to select the desired points on the inspection path along which the
robot should move the camera. The rest of the approach is fully automatic.

In the second part of the thesis, we extend the autonomy of robot behaviour to adapting
the whole industrial process. Robotic visual inspection is based on manually pre-defined
postures between the camera and the object, and often a robot has to move the in-hand
camera around of the object. The path of the robot is typically always the same, determined
in advance. But, in order to check only the selected subset out of all possible aspects of
the product, we need to generate all possible transitions between all possible aspects. This
is a slow and tedious process. Therefore, we propose a method able to use neural networks
in order to classify parts only according to possible defects. The classification results
allow for the exclusion of certain viewpoints, effectively saving time on the production line.
The emphasis lies on the adaptive nature of this industrial task, showcasing the ability to
accelerate processes and improve overall efficiency in industrial settings.

Trajectory generation for dynamic tasks, which involve complex problem-solving and
require more than simple motion repetition, is explored in the third part of the thesis. Due
to the time-consuming nature of robot learning, simulations are often employed to accel-
erate the process. While complete skill learning in simulations is extensively researched
and falls outside the scope of this part, our focus lies on effectively transferring knowledge
from simulation to the real-world. Initially, a deep neural network encodes the skill in one
domain, which is later adapted for a target domain by partial retraining using the real
data. Our proposed approach combines backpropagation and reinforcement learning for
retraining, demonstrating significant speed improvements compared to individual methods
and a tenfold acceleration compared to learning from scratch. As an example for this
approach, we apply it to the challenging task of robot throwing, which involves dynamic
elements and is not reliant only on the final position of the robot motion.

xi

Povzetek

Cilj prizadevanj za avtonomno učenje robotov je omogočiti robotom, da se nemoteno vklju-
čijo v naše vsakdanje življenje ter povečajo našo učinkovitost in udobje. Po drugi strani
pa ima v industrijskem sektorju avtonomno učenje robotov ključno vlogo pri sledenju hi-
tro razvijajočim se zahtevam trga. Ker se izdelki in procesi hitro spreminjajo, se lahko
roboti, opremljeni s sposobnostmi avtonomnega učenja, hitro prilagodijo in optimizirajo
svoje delovanje, kar vodi k večji produktivnosti in konkurenčnosti.

V tej disertaciji je generiranje obnašanja robotov obravnavano na različnih ravneh
kompleksnosti. Na začetku naslovimo metode avtonomne optimizacije, nato preidemo
na avtonomno prilagajanje in nazadnje raziskujemo možnosti popolnoma avtonomnega
generiranja obnašanja.

Namestitev ali celo samo modifikacija robotsko podprte proizvodnje in kontrole kako-
vosti je zahteven proces, ki običajno zahteva sodelovanje človeškega strokovnjaka. Dobljeni
parametri, npr. hitrosti robota, ki jih določi strokovnjak, so pogosto subjektivni in neop-
timalni. Zato v prvem delu doktorske naloge prikažemo metodo avtonomne optimizacije
trajektorije za ponavljajočo se nalogo. Predlagamo nov pristop za generiranje trajektorij
vizualnega pregleda obdelovancev na podlagi CAD-modelov. Strokovnjak mora izbrati le
želene točke na poti pregleda, po katerih naj robot premika kamero. Preostali del pristopa
je popolnoma samodejen.

V drugem delu disertacije razširimo avtonomijo obnašanja robota na prilagajanje ce-
lotnega industrijskega procesa. Robotsko vizualno pregledovanje temelji na vnaprej do-
ločenih položajih med kamero in predmetom, pogosto pa mora robot premikati kamero
v roki okoli predmeta. Pot robota je običajno vedno enaka, določena vnaprej. Da pa bi
lahko preverili le izbrano podmnožico od vseh možnih vidikov izdelka, moramo ustvariti
vse možne prehode med vsemi možnimi vidiki. To je počasen in zamuden postopek. Zato
predlagamo metodo, ki lahko uporabi nevronsko mrežo za razvrščanje delov samo glede na
možne napake. Rezultati klasifikacije omogočajo izključitev nekaterih vidikov, kar učinko-
vito prihrani čas na proizvodni liniji. Poudarek je na prilagodljivi naravi te industrijske
naloge, ki prikazuje sposobnost pospeševanja procesov in izboljšanja splošne učinkovitosti
v industrijskih okoljih.

V tretjem delu disertacije je raziskano ustvarjanje poti za dinamične naloge, ki vključu-
jejo kompleksno reševanje problemov in zahtevajo več kot le preprosto ponavljanje gibanja.
Zaradi dolgotrajne narave učenja robotov se za pospešitev procesa pogosto uporabljajo si-
mulacije. Medtem ko je popolno učenje veščin v simulacijah obsežno raziskano in ne sodi
v okvir tega dela, se osredotočamo na učinkovit prenos znanja iz simulacij v realni svet.
Na začetku globoka nevronska mreža kodira spretnost v eni domeni, ki jo pozneje z delnim
prekvalificiranjem z uporabo realnih podatkov prilagodi za ciljno domeno. Naš predlagani
pristop združuje povratno razširjanje in učenje z ojačitvijo za prekvalifikacijo, pri čemer
izkazuje znatne izboljšave hitrosti v primerjavi s posameznimi metodami in desetkratni
pospešek v primerjavi z učenjem od začetka. Kot primer tega pristopa ga uporabimo za
zahtevno nalogo robotskega metanja, ki vključuje dinamične elemente in ni odvisna le od
končnega položaja gibanja robota.

xiii

Contents

List of Figures xv

List of Tables xix

List of Algorithms xxi

Abbreviations xxiii

Symbols xxv

1 Introduction 1
1.1 Autonomous Generation of Robot Behaviour 4

1.1.1 Trajectory optimization for higher productivity 6
1.1.2 Adaptive process behaviour . 6
1.1.3 Dynamic task and process behaviour generation 7

1.2 Review of the Relevant Scientific Field . 8
1.3 Hypothesis . 9
1.4 Contribution of the Thesis . 9

2 Trajectory Optimization for Higher Productivity 11
2.1 Methodology . 12

2.1.1 Image quality measures . 12
2.1.2 Specification of motion trajectories for visual quality inspection . . . 13
2.1.3 Optimization objective . 18
2.1.4 Optimizing the speed of motion by iterative learning control (ILC) . 19
2.1.5 Speed profile refinement by reinforcement learning (RL) 21

2.2 Experimental Evaluation and Results . 23
2.2.1 Experimental setup . 24
2.2.2 Specification of trajectories . 25
2.2.3 Performance of speed optimization 28
2.2.4 Comparison to other methods . 30

2.3 Discussion . 31

3 Adaptive Process Behaviour 35
3.1 Methodology . 36

3.1.1 Planners . 36
3.1.2 Evaluation of motion planners . 43
3.1.3 High level decision making for planning 44

3.2 Experimental Evaluation and Results . 47
3.2.1 Experimental setup . 47
3.2.2 Motion planner evaluation . 48
3.2.3 Decision making . 52

xiv Contents

3.3 Discussion . 55

4 Dynamic Task and Process Behaviour Generation 57
4.1 Methodology . 58

4.1.1 Trajectory acquisition and encoding 58
4.1.2 Storing the knowledge in neural network 62
4.1.3 Adaptation of knowledge to target environment 64

4.2 Experimental Evaluation and Results . 66
4.2.1 Experimental setup . 66
4.2.2 Transfer learning evaluation . 67

4.3 Probabilistic Approaches for Storing the Knowledge 77
4.3.1 Methodology . 78
4.3.2 Experimental protocol and results 80

4.4 Discussion . 83

5 Discussion and Outlook 87

6 General Summary and Conclusions 89

References 91

Bibliography 99

Biography 103

Permissions 105

xv

List of Figures

Figure 1.1: Optimization of a robot inspection process with continuous stream of
visual data being recorded using an in-hand industrial camera. Left pic-
ture reprinted from [16], used under Creative Commons CC-BY license.

. 2
Figure 1.2: Robot inspecting the workpiece from the discrete viewpoint with the in-

hand industrial camera. Right picture reprinted from [20], used under
Creative Commons CC-BY license. 3

Figure 1.3: Generation of robot task behaviour with dynamic interaction between
a robot and environment. 4

Figure 1.4: Pyramid graph showing the different levels of the autonomous robot
behaviour generation. Top part of the pyramid shows the simplest case,
when the known trajectory is optimized, middle part shows the case
when the process is known but can be adapted, and the bottom part
shows the case of behaviour generation from scratch and adapting it to
the real-world dynamic environment. 5

Figure 2.1: Trajectory optimization is set to be on the top of our classification
pyramid since it is the simplest by complexity and the most widely used. 11

Figure 2.2: Focus measures ϕ at different speeds. Plot a): 60 seconds motion. Plot
b): 20 seconds motion. Plot c): 3 seconds motion. The time axis is
normalized to 1 for all graphs. 14

Figure 2.3: Relative change of the filtered focus measures for 10 different measures
as a function of normalized time. 14

Figure 2.4: Basic ILC approach scheme. 19
Figure 2.5: Flowchart of the proposed learning algorithm. 24
Figure 2.6: Experimental setup with the curved workpiece (left) and the two-sided

workpiece (right). 25
Figure 2.7: The determined paths (yellow), starting points (white) and orientations

in CAD models. The curved workpiece is on the left and the two-sided
workpiece on the right. 25

Figure 2.8: Position and orientation paths extracted from the CAD model and their
first derivatives with respect to the weighted sum of arc and angle length
r as specified in Eq. (2.8). Plots a) b) c) d) show position, orientation,
derivative of the position and derivative of orientation with respect to
the weighted sum of arc and angle path for the curved workpiece respec-
tively and plots e) f) g) h) show the same parameters for the two-sided
workpiece. Discontinuities in the first derivatives are marked with red
dots and indicate the breakpoints. 26

Figure 2.9: Position, orientation, velocity, angular velocity generated with CDMPs
for the curved workpiece are given in plots a), b), c), d) and for the
two-sided workpiece in figures e), f), g), h). 27

xvi List of Figures

Figure 2.10: Sequence of still images showing the robot moving along the surface of
the curved workpiece. Video of the experiments for this workpiece is
attached. 27

Figure 2.11: Optimization results for the curved workpiece (left column) and the
two-sided workpiece (right column). The graphs in a) show the image
quality measures y. The next three lines of graphs show the linear
and angular speed ∥ṗpp∥ and ∥ωωω∥, in rows b) and c) respectively, and
the corresponding speed profile ν in row d). The graphs show these
quantities for the initial motion (too fast), reference motion (too slow),
and the motions learned by ILC and RWPL. 28

Figure 2.12: Effect of motion speed on the captured images. Row a) shows the
images for the slow reference trajectory, where image quality is high
but the motion is slower than necessary. Row b) shows the images
for the case of the initial trajectory, which is too fast to obtain high-
quality images. Row c) shows the images obtained while executing the
optimized trajectory after applying ILC and RWPL. Column-wise, the
images were taken at the same phase of the motion in all three instances.
The current image quality measure value is displayed in the upper-left
corners of the images (values for the experiment shown in the attached
video). 29

Figure 2.13: Comparison between initial, reference, ILC, ILC and RWPL, ILC and
CMA-ES, only CMA-ES and only RWPL for a) image quality measures
(y), b) linear speed ∥ṗpp∥ and c) angular speed ∥ωωω∥. 30

Figure 2.14: Comparison between initial, reference, ILC, ILC and RWPL, ILC and
CMA-ES, only CMA-ES and only RWPL for a) execution times and b)
average image quality. 31

Figure 3.1: Trajectory adaptation is set to be in the middle of our classification
pyramid since it is occasionally used in industrial processes but still not
completely generative behaviour approach. 35

Figure 3.2: Path planner inputs and outputs. 36
Figure 3.3: Path planner division introduced in [19]. 37
Figure 3.4: Workspace divided to cells (left) and corresponding graph (right) [78]. 38
Figure 3.5: Robot navigating through potential field from starting (red dot) to goal

position (green dot). Obstacles, presented with black areas, generate
repulsive force and goal position generates attractive force. Resulting
vectors are presented with arrows. Reprinted from [79], used under
Creative Commons CC-BY license. 38

Figure 3.6: PRM steps: 1. Sampling random points (left), 2. Searching for possible
connection between points (middle), 3. Finding the shortest path from
the upper left corner to the bottom right corner [76]. 39

Figure 3.7: RRT tree building (left) and final path (right) [76]. 39
Figure 3.8: Finding path from the upper left to the bottom right corner with fuzzy

logic [76]. 41
Figure 3.9: GA fitness, distance within the population and path length through

iterations (left) and solution of the path from the upper left to the
bottom right corner (right) [76]. 42

Figure 3.10: PSO in 5th, 25th and 50th iteration [93]. 42
Figure 3.11: Five typical defects: e1) porous material, e5) faulty/broken sides, e2)

incomplete bottom edge, e3) faulty/broken pins and e4) faulty windings
as a result of the injection moulding process. 47

List of Figures xvii

Figure 3.12: Physical implementation of the visual quality inspection cell for the
use-case (left), and RViz visualization (right). 48

Figure 3.13: Seven out of eleven postures for visual quality inspection from the given
use-case in RViz visualization and in real-world execution. 48

Figure 3.14: Average duration for the calculation of transition trajectory between
11 random pairs of poses, 250 times per pair, for 21 motion planning
algorithms listed in Table 3.2. The times are cut at 2 seconds, while
the calculations for some planners took longer, up to pre-defined 5 s
calculation cut-off time. 50

Figure 3.15: Average smoothness (Equations (3.2)-(3.3)) of the generated trajectories
between 11 random pairs of poses, 250 times per pair, for 21 motion
planning algorithms listed in Table 3.2. 51

Figure 3.16: Average length (Eq. (3.4)) of transition trajectory between 11 random
pairs of poses, 250 times per pair, for 21 motion planning algorithms
listed in Table 3.2. The lengths are cut at 50 rad. 51

Figure 3.17: Database DB1 datapoints projected into the 3-dimensional latent space
of a deep AE with red dots marking datapoints for 32 physically avail-
able faulty parts and smaller black dots for good parts. 52

Figure 3.18: Clustering of data points in the 3-dimensional latent space of AE using
K-means (left) and GMM (right) clustering algorithms. 53

Figure 3.19: Clustering of NOK datapoints in latent space of AEs trained with dif-
ferent initial seeds. In all cases the clustering is the same as in Figure
3.18. 53

Figure 3.20: Manual clustering of physical parts per defect coincides with the clus-
tering in the latent space of the AE, depicted by the color edges and
colors of clusters in Figure 3.18. 54

Figure 3.21: Probability of defect determined by posterior distribution of GMM com-
ponents. The colors of the highest defect probability are associated with
defects in Figure 3.11. 55

Figure 3.22: Results of final visual quality inspection for the "incomplete bottom
edge" (e2) defect of several parts. 56

Figure 4.1: Trajectory generation is set to be in the bottom of our classification
pyramid since it is rarely applied in commonly used robotics due to its
complexity. 57

Figure 4.2: Left image shows the initial throwing action and coordinate system of
the robot and right image shows the feasible range of angles with the
origin of the arc put into the initial position of the throw. 60

Figure 4.3: Cross section of the normalized manipulability measure and minimal
distance to the joint limit for the reachable points. 61

Figure 4.4: Schematic structure of the implemented approach. 62
Figure 4.5: Experimental setup showing Mitsubishi PA10 robot in two domains:

Kinematic model and MuJoCo simulation. 66
Figure 4.6: Experimental setup showing throwing action in two different domains:

Gazebo and MuJoCo simulation. 67
Figure 4.7: Convergence of the error when we used our method on 16 targets is

shown with a red line, with 12 targets with a green line and with back-
propagation with a blue line. 68

Figure 4.8: Contour plot of the error with using the kinematic database for training
the neural network. 68

xviii List of Figures

Figure 4.9: Contour plot of the error after the update of the neural network with
only 9, equally spaced targets. This also represents the initial point for
our proposed approach. 69

Figure 4.10: Contour plot of the error at the end of learning. 69
Figure 4.11: Bar graphs of the mean and maximal error for the case of kinematic

database, after the first update and at the end of the learning. 70
Figure 4.12: Contour plot of the error with kinematic and updated database when

using CDMP instead of latent space. 71
Figure 4.13: Database for training the motion-to-target NN skill model of throwing,

acquired in the source domain. From left to right: Position trajectories
in Cartesian space; Quaternion orientation trajectories; spatial trajec-
tories with magenta color marking the start; targets, i. e., landing spots. 72

Figure 4.14: Reduction of the average (left) and maximal (right) throwing error after
transitioning to the new domain (sim-to-sim) using different methods.
Solid lines show the average of 5 experiments while the shaded area
depicts the standard deviation. 74

Figure 4.15: Reduction of maximal throwing error after transitioning to the new do-
main (sim-to-sim) with different methods. Solid line shows the average
of 5 learning iterations and shaded area depicts standard deviation. . . 74

Figure 4.16: Contour plots showing the throwing error after learning for different
learning approaches. 75

Figure 4.17: Average error (top) and maximal error (bottom) at the end of learn-
ing (average of 5 learning trials). Error bars depict the minimum and
maximum obtained values. 76

Figure 4.18: Average error reduction when only 5 throws were implemented for one
learning iteration in RL+BP setting. 76

Figure 4.19: Left: Inputs and outputs of the trajectory prediction architecture: In-
put to the network are several context points. Each context point con-
tains information about box position and orientation (blue) and infor-
mation about robot end-effector position (red) together with relative
time in which it happened (green axis). Output of the architecture is
the predicted end-effector trajectory (orange). Right: Execution of each
replanned part of trajectory on a simulated robot. 77

Figure 4.20: Architecture with PB decoder. 79
Figure 4.21: Architecture with MC decoder. 79
Figure 4.22: Bar graphs showing the average error in position and orientation for all

the tested cases for latent space sizes 8 and 16. 81
Figure 4.23: Histogram showing the distribution of the error in position and orien-

tation for different latent space size. 82
Figure 4.24: Error with respect to the increase in standard deviation of the learned

policy. 82
Figure 4.25: Experimental setup for evaluation of TL. (a) Mujoco dynamic simula-

tion. (b) Mitsubishi PA-10 robot in its initial posture (left), after the
release of the ball (center), and when the ball lands (right). 84

Figure 4.26: Image sequence of a throw with TALOS humanoid robot in MuJoCo
simulation environment, and in the real-world. Both represent the tar-
get domain, but only initial throwing action for transfer learning to the
real-world has been obtained. 84

xix

List of Tables

Table 3.1: Injection Moulding Parameters Used for Prediction of Defects. 46
Table 3.2: List of tested OMPL planning algorithms. 49
Table 3.3: Success rate of planners for 250 planning attempts for 110 transitions

between two postures. 49

Table 4.1: Average, maximal error and number of samples used for training of NN.
Samples obtained in a new domain (dynamic simulation) are underlined. 71

xxi

List of Algorithms

Algorithm 2.1: Procedure for optimizing the speed profile for visual quality inspec-
tion by ILC. 21

Algorithm 3.1: Procedure for inspecting the viewpoints of one product based on
the process parameters . 45

Algorithm 4.1: Procedure of improving neural network connecting targets with the
latent space values. 64

xxiii

Abbreviations

ACO . . . Ant Colony Optimization
AE . . . Autoencoder
AI . . . Artificial Intelligence
CAD . . . Computer-Aided Design
CAM . . . Computer-Aided Manufacturing
CD . . . Cell Decomposition
CDMP . . . Cartesian Dynamic Movement Primitives
CHOMP . . . Covariant Hamiltonian Optimization for Motion Planning
CMA−ES . . . Covariance Matrix Adaptation Evolution Strategy
CNC . . . Computerized Numerical Control
DMP . . . Dynamic Movement Primitives
DoF . . . Degree of Freedom
GA . . . Genetic Algorithms
ILC . . . Iterative Learning Control
LED . . . Light Emitting Diode
MC . . . Monte Carlo architecture for encoder-decoder
MLP . . . Multilayer-Perceptron
NN . . . Neural Network
NOK . . . not OK
OMPL . . . Open Motion Planning Library
PB . . . Parameter-Based architecture for encoder-decoder
PC . . . Personal Computer
PCA . . . Principal Component Analysis
PI2 . . . Policy Improvement with Path Integrals
PoWER . . . Policy Learning by Weighting Exploration with the Returns
PRM . . . Probabilistic Road-Map
ProDMP . . . Probabilistic Dynamic Movement Primitives
PSO . . . Particle Swarm Optimization
RG . . . Reality Gap
RL . . . Reinforcement Learning
RNN . . . Recurrent Neural Networks
ROS . . . Robot Operating System
RRT . . . Rapidly-Exploring Random Trees
RWPL . . . Reward-Weighted Policy Learning
SBP . . . Sampling-Based Methods for Planning
SBPL . . . Search-Based Planning Library
STOMP . . . Stochastic Trajectory Optimization for Motion Planning
TL . . . Transfer Learning
T−RRT . . . Transition-based Rapidly-Exploring Random Trees

xxv

Symbols

b̂r . . . bias of neural network
cc . . . cross section of the manipulability measure and smallest normalized distance for

point c
ci . . . center of i-th radial basis function
ctx . . . context point used as input to encoder-decoder network
c . . . number of clusters used in classification of the defect
DDDp . . . CDMP scaling matrix for position
DDDo . . . CDMP scaling matrix for orientation
en . . . ILC error in repetition n
df . . . distance between camera and object
d . . . points distributed along the planned path
f . . . focal distance of the lens
fffp . . . CDMP position forcing term
fffo . . . CDMP orientation forcing term
gggp . . . CDMP goal position
gggo . . . CDMP goal orientation
H . . . height of the image
hi . . . width of i-th radial basis function
I(x, y) . . . the intensity values at pixel (x, y)
K . . . number of trajectory segments
Kj . . . number of points in j-th segment
L . . . length of the generated trajectory
Lj . . . overall arc length of the j-th segment
Lwg . . . Cholesky decomposition of the covariance matrix of ProDMP parameters distribu-

tion in encoder-decoder architecture
M . . . number of weights used to define velocity profile
N . . . number of weights used to define the shape of the trajectory
nnn . . . normals to the workpiece surface
nnnj,k . . . unit surface normals at points p̃ppj,k
P . . . posterior probabilities of latent space parameters belonging to each of c GMM

clusters
P . . . number of image samples taken in iteration of ILC learning
p̃ppj,k . . . positions of the extracted path at k-th point of j-th trajectory segment
pppj,k . . . positions of time parametrized trajectory at k-th point of j-th trajectory segment
ṗppj,k . . . linear velocities of time parametrized trajectory at k-th point of j-th trajectory

segment
p̈ppj,k . . . linear accelerations of time parametrized trajectory at k-th point of j-th trajectory

segment
ṗx . . . manually calculated camera speed to image motion
Q . . . low-pass filter for smoothening ILC signal

xxvi Symbols

q̃qqj,k . . . orientations in quaternions of the extracted path at k-th point of j-th trajectory
segment

qqqj,k . . . orientations in quaternions of time parametrized trajectory at k-th point of j-th
trajectory segment

qqqw . . . orientation in quaternions of the workpiece in the robot coordinate system
R . . . reward in RWPL
RRR . . . 3-D rotational matrix specifying the orientation of the camera
rj,k . . . weighted sum of arc and angle length along the path at k-th point of j-th trajectory

segment
rh,n,p . . . intermediate reward computed at the p-th image captured in the n-th trial
rv,n,p . . . intermediate reward computed at the p-th image captured in the n-th trial
r̂z . . . reward for one target
S . . . trajectory smoothness
sj,k . . . arc length along the path at k-th point of j-th trajectory segment
T . . . desired landing spot coordinates
Tt . . . evaluation landing spot coordinates
Tr . . . reward landing spot coordinates
Te . . . the duration of the motion execution
Tj . . . duration of inspection movement for j-th segment
T ′ . . . real landing spot coordinates
ttt . . . tangents of the path
tttw . . . position of the workpiece in the robot coordinate system
tj,k . . . time at which k-th point of j-th trajectory segment is reached
tp . . . time at which image sample is taken
te . . . camera exposure time
un . . . ILC input signal in repetition n
ux . . . pixel size
V . . . width of the image
Vi . . . inspection viewpoints associated with a GMM cluster
V l . . . latent space values of CDMP parameters
W . . . trajectory parameters
wν
i . . . CDMP weights defining velocity profile

wwwp
i . . . CDMP weights defining the shape of position part of the trajectory

wwwo
i . . . CDMP weights defining the shape of orientation part of the trajectory

x . . . CDMP phase
y . . . image quality measure
y . . . ground truth trajectory used to train encoder-decoder NN
yb . . . robot EE position used as boundary condition for integrating ProDMP trajectory
ẏb . . . robot EE velocity used as boundary condition for integrating ProDMP trajectory
yd . . . desired image quality measure
yn . . . ILC output signal in repetition n
Z . . . number of targets used in one iteration of learning
zzz . . . scaled linear velocity
α . . . constant used for time parametrization
αx . . . CDMP parameter
β . . . constant used for time parametrization
γ . . . constant used to stop ILC before slowing down too much
δ . . . angle between consecutive planned trajectory segments
ε . . . allowed deviation from the desired image quality measure
εn . . . zero-mean Gaussian noise used for exploration in RWPL

xxvii

ζj . . . overall angle length of the j-th segment
ηηη . . . scaled angular velocity
κ . . . user-selected constant for terminal reward
λ . . . ILC gain for defining the update step
µA . . . mean of the prior distribution used in encoder-decoder architecture
µc . . . manipulability measure for point c
µr . . . mean of the latent space observation distribution used in encoder-decoder archi-

tecture
µτ . . . mean of the predicted trajectory distribution using encoder-decoder architecture
µ̂c . . . normalized manipulability measure for point c
µwg . . . mean of the ProDMP parameters distribution in encoder-decoder architecture
µz . . . mean of the latent space distribution in encoder-decoder architecture
ν(x) . . . speed scaling function
ξj,k . . . angle length along the path at k-th point of j-th trajectory segment
ρc . . . smallest normalized distance to the joint limit for point c
τ . . . CDMP constant defining the initial duration of motion
τ . . . encoder-decoder network predicted trajectory
τslow . . . initial slow trajectory execution time
Στ . . . covariance of the predicted trajectory distribution using encoder-decoder architec-

ture
σ2
A . . . variance of the prior distribution used in encoder-decoder architecture

σ2
r . . . variance of the latent space observation distribution used in encoder-decoder ar-

chitecture
σ2
τ . . . variance of the predicted trajectory distribution using encoder-decoder architecture

σ2
z . . . variance of the latent space distribution in encoder-decoder architecture

θ . . . encoder-decoder weights and biases
Θn . . . RWPL set of policy parameters executed until n-th iteration
θ∗
n . . . parameters of n-th iteration with added exploration noise

θn . . . RWPL policy parameters in n-th iteration
θAE . . . latent space projection of the production parameters
ϕh . . . squared magnitude of the horizontal gradient
ϕv . . . squared magnitude of the vertical gradient
ϕ . . . focus measure
ϕr . . . relative focus measure
ϕh,n,p . . . horizontal image quality measures computed at the p-th image captured in the n-th

trial
ϕv,n,p . . . vertical image quality measures computed at the p-th image captured in the n-th

trial
ϕh,d,p . . . horizontal reference image quality measure interpolated to the phase of p-th image

captured in the n-th trial
ϕv,d,p . . . vertical reference image quality measure interpolated to the phase of p-th image

captured in the n-th trial
ϕh,ILC,p . . . horizontal aligned and interpolated image quality measures obtained when execut-

ing the inspection trajectory generated from the parameters computed by ILC
ϕv,ILC,p . . . vertical aligned and interpolated image quality measures obtained when executing

the inspection trajectory generated from the parameters computed by ILC
Ψi . . . i-th radial basis function used in CDMP
ωωωj,k . . . angular velocities of time parametrized trajectory at k-th point of j-th trajectory

segment

xxviii Symbols

ω̇̇ω̇ωj,k . . . angular accelerations of time parametrized trajectory at k-th point of j-th trajec-
tory segment

ω̂r . . . weight of neural network
Dso . . . source environment dataset
D̂so . . . dataset connecting targets and latent space values obtained in source environment
Dta . . . dataset connecting targets and trajectory parameters obtained in target environ-

ment
NBP . . . neural network retrained using BP
NRL . . . neural network retrained using RL
NRL&BP . . . neural network retrained using a combination of BP and RL
Nso . . . neural network trained using source environment data
N ′

so . . . neural network trained using source environment data with only one layer unlocked
N ′

ta . . . neural network retrained using target environment data with only one layer un-
locked

⟨·⟩w(πk)
. . . importance sampling

1

Chapter 1

Introduction

Rising demand for a huge spectre of products with different features and characteristics has
led to the increased demands for faster and better adaptations of production lines between
highly competitive companies around the world. Such high-mix low-volume production
strategy caused big changes in hardware and software design. Hardware needs to be capable
of quickly adapting to the new series of products, and therefore the whole spectre of
adaptive, reconfigurable workcells has emerged [1]–[3]. Newly developed hardware also
required fast adaptation of the software, which caused the field of robotic learning to
become an inevitable tool in nowadays engineering. It provides tools for the design of
sophisticated and hard-to-engineer robot tasks without the need for manual programming
[4]. These tools can be used for optimization, prediction and planning, as well as learning
new skills entirely from scratch. It is expected that the number and variety of robot
applications will increase in the factories of the future [5].

The optimization of robot trajectories to achieve faster execution times is a common
challenge in the field of industrial robotics. Minimum-time trajectory planning has been
extensively researched and developed, utilizing both offline and online methodologies [6].
Approaches for optimizing the trajectories with respect to energy [7], actuation effort [8]
or both [9] have already been developed, but they are model-based and cannot be applied
when the relationship between the optimization criterion and optimization variables is not
known, as in the case of vision. Alongside the other sensory systems that production lines
heavily rely on, vision is becoming a key driving force behind manufacturing processes in
modern factories [10], thanks to its ability to detect the position and identity of different
parts. Consequently, image quality is recognized as one of the main essential aspects of
visual inspection systems [11]. A wide array of visual sensors such as structured light,
time of flight, line scan cameras, stereo vision as well as monocular vision with standard
area scan or RGB cameras are already employed for visual inspection and quality control
processes [12], [13]. The application of robot-assisted visual quality inspection has a whole
variety of possible applications, but there are two main approaches for conducting such
inspections: a robot can examine a workpiece from a limited number of specific angles
or capture a continuous stream of visual data. Additionally, the robot may either hold
a camera and adjust its position in relation to the workpiece or, alternatively, maintain
a fixed camera position while manipulating the workpiece being inspected. In the first
part of the thesis, we focus on the example where the continuous stream of data is being
recorded and a robot is moving the camera around a stationary object - Figure 1.1. The
main problem of this approach is that the movement of the robot needs to be optimized so
that we acquire the whole stream of data in the shortest possible time without affecting the
sharpness of the image. For achieving a sharp image in our case, the robot always needs
to be at a constant distance from the object surface (note that industrial cameras usually

2 Chapter 1. Introduction

have fixed focal length) and its velocity should not be too high in order to prevent motion
blur. The process of setting up such a system is a tedious job for the operator and might
at the end result in trajectories that are sub-optimal. A typical example of such a quality
inspection process is the inspection of weld seams [14]. The determination of the correct
distance from an object is used as described in [15], while our focus is on the algorithm
capable of determining the optimal velocity.

Figure 1.1: Optimization of a robot inspection process with continuous stream of visual
data being recorded using an in-hand industrial camera. Left picture reprinted from [16],
used under Creative Commons CC-BY license.

Optimization of one trajectory is a common and widely spread task in robotics and
assumes that the path is already predefined. Therefore, it can be applied only to repetitive
industrial processes with a hard-defined pipeline. The more complex problem arises in
situations when the robot is holding a camera and needs to inspect the workpiece from
many different viewpoints and has to place it so that there are no obstacles in the line of
sight [17] as shown in Figure 1.2. These setups have a lot of trajectories that need to be
generated even when the number of discrete viewpoints is fixed. Such a process usually
takes a lot of time, but the pace of the production is often relatively high, thus leaving
only a little time for the robot to move the camera around the object. Fast and accurate
motions need to be implemented in such cases, but even that might not be enough. That is
why extensions to the manufacturing lines that include buffers, where the products wait for
inspection, can be implemented, or parallel checking with several cameras on several robots
can be employed. Introducing all of these might increase production costs and therefore a
trade-off is struck between the possible number of defects not being detected and the effort
put into quality inspection [18]. To avoid checking all the aspects of the product, we propose
using AI approaches to predict at which viewpoints the error is the most likely to occur
so that we can exclude the others. This expands the problem of quality inspection since
the predefined pipeline for the inspection is broken and trajectories need to be generated
based on the prediction of potential errors. We, therefore, propose to use motion-planners
to generate trajectories to the desired discrete viewpoints. Different classical and heuristic
approaches to motion planning already exist [19], so implementation of these planners is
not the main focus of our interest. We focus on the method of experimentally choosing the
most suitable one. The proposed approach combines a NN capable of detecting the error
and a planner that is capable of generating trajectories on-line in order to accelerate the
quality inspection process.

Motion planners are an excellent tool for finding a collision-free motion between an

3

Figure 1.2: Robot inspecting the workpiece from the discrete viewpoint with the in-hand
industrial camera. Right picture reprinted from [20], used under Creative Commons CC-
BY license.

initial and final configuration within a specified environment [21]. However, they fail on
more complicated dynamic tasks where the robot should interact with the environment -
Figure 1.3. For this purpose, reinforcement learning (RL) is mainly used [22]. At its core,
it relies on the robot interacting with the environment in order to adapt its behaviour com-
pletely autonomously. It was successfully applied to control complex robot systems [23],
multi robot systems [24] as well as in the form of end-to-end perception-to-control policies
[25]. The main drawback of this approach is that it can be a complicated and lengthy
process, which requires numerous iterations, trials, and repetitions, all of which might not
be safe for the robot or its immediate environment [26]. For these reasons, simulation,
where data acquisition is cheaper, safer, faster and more diverse [27] is mainly used. As
always, some compromise has to exist, so simulations have their drawback – inevitable
modelling approximation errors [27]–[29], which result in different behaviour when applied
to the real world. This difference is called the reality gap (RG) [30], and a general ap-
proach to quantify it has not been presented yet [27]. One way to overcome this problem
is with transfer learning (TL), where the task/behaviour is first learned in simulation or
presented by a mathematical model [31], [32] and then transferred to the real world [28],
[33], [34]. This process is part of the so-called domain adaptation, where source policy
provides priors to the subsequent RL of tasks [35], [36]. Since RL is based on searching for
the correct parameters that describe the policy, it can suffer from sample inefficiency and
the curse of dimensionality [37]. This is why DMPs or CDMPs, both capable of reducing
the number of parameters for smooth trajectories, are often taken as a motion represen-
tation in RL [37], [38]. In order to reduce the search space even further, two options are
available. One is to employ Principal Component Analysis (PCA) [39], which involves pro-
jecting the data onto a vector space defined by basis vectors determined by the variance
of the data. Another option is to use encoder-decoder networks, which are artificial NNs
that learn efficient data encoding in an unsupervised manner. The input data is passed
through the layers of the NN and the layer with the smallest number of neurons, known
as the latent space [40], [41], can have smaller dimensionality than the input data. While
PCA provides a linear transformation of the data, encoder-decoder networks, such as au-
toencoder networks [42] or variational autoencoders [43], offer a nonlinear transformation,
which is considered more suitable for the nonlinear nature of our world [44]. As with all

4 Chapter 1. Introduction

NNs, encoder-decoder networks have a strong point of being able to generalize [45]. This
makes them a suitable candidate for storing the knowledge obtained in the source domain.
The concept that we propose for solving the problem of autonomous learning consists of
learning the complete model using imitation learning or applying RL in the search space of
DMPs and storing the policy into the encoder-decoder structure NN with a latent space.
When the network is fully trained and capable of performing the desired actions in the
source domain, we proceed with updating only the part of the network using RL in its
latent space and backpropagating with new data from the target domain [31], [46].

Figure 1.3: Generation of robot task behaviour with dynamic interaction between a robot
and environment.

1.1 Autonomous Generation of Robot Behaviour

The overall goal of the thesis is to apply and advance methodologies of autonomous robot
behaviour learning processes. In Figure 1.4, we classify robot learning with respect to its
complexity. The upper part of the pyramid (optimization) shows the most straightforward
case, when executable trajectory that solves a given problem is already known. This
solution can be autonomously adapted/optimized in order to gain increased efficiency of the
given process. The middle part of the pyramid (process adaptation) shows the case where
the single solution trajectory is not known, but the overall robot task is known. Based on
the parameters of the process, the task itself can be optimized. Thus, in this case, there is
a big, but finite number of possible options for adaptation. As shown in Figure 1.4, they
are determined, for example, based on the output of a NN as the condition (C). By having
prior knowledge about the task (K), there is a certain number of possible trajectories that
need to be generated. Since in the scope of this field of robot learning we are optimizing
only the process and not a single trajectory, approximated trajectories are not guaranteed
to be optimal. However, they can be further separately optimized using the approach from
the optimization part of the pyramid. The bottom part of the pyramid (dynamic process
generation) shows the most complex case of robot learning. Here, the desired outcome
of some robot action is given (O). Then, through reinforcement learning that interacts
with the source environment (usually simulation), a set of parameters (A) that describe
the trajectory capable of satisfying the given outcome are learned. In this case, the robot

1.1. Autonomous Generation of Robot Behaviour 5

interacts with the source (simulated) environment, thus making it exceedingly challenging
to correctly model or take into account all the parameters. After learning the complete
policy on the simplified and modelled environment, the final step is adapting the behaviour
to the target environment (T) using TL.

Optimization
• Trajectory is known

but not optimal
• System behaviour

does not depend on
environment

• Repetitive tasks

Process Adaptation
• Process is known
• Trajectories are not

known
• System behaviour does

not depend on
environment

• Repetitive tasks with
certain level of adaptation
possible based condition
(C) and prior knowledge
about the task (K)

• Finite number of possible
outcomes

Dynamic Process Generation
• Process is known
• Trajectories are not known
• System behaviour heavily

depends on environment
• Non repetitive tasks with

infinite number of possibly
desired outcomes (O)

• Only outcome is given
• Solution is found by

searching parameters (A)
in source environment (S)
and transferred (TL) to
target environment (T)

C K

O

A

S

T

TL

Optimization

Process
Adaptation

Dynamic
Process

Generation

Figure 1.4: Pyramid graph showing the different levels of the autonomous robot behaviour
generation. Top part of the pyramid shows the simplest case, when the known trajectory
is optimized, middle part shows the case when the process is known but can be adapted,
and the bottom part shows the case of behaviour generation from scratch and adapting it
to the real-world dynamic environment.

Besides showing the classification based on complexity, the presented pyramid structure
in Figure 1.4 also shows the inheriting properties of robot learning approaches. Each lower
part can be additionally optimized using the top part of the pyramid. Similarly, if the robot
behaviour is learnt successfully from scratch using the method from the bottom layer, it
can be used in the middle layer for trajectory generation. Afterwards, these trajectories
could be further optimized again using the method from the top of the pyramid.

Hereinafter, we provide an implementation example with concrete examples for each
level of the pyramid given in Figure 1.4. Implementations and details about used algorithms

6 Chapter 1. Introduction

are given in the top-down approach, beginning with the optimization example, followed by
adaptation, and concluding with dynamic task generation.

1.1.1 Trajectory optimization for higher productivity

Installing or modifying robot-supported production and quality inspection is commonly
tedious and necessitates the continuous engagement of a human expert. This involve-
ment often leads to subjective parameter specification, such as robot velocities, resulting
in suboptimal outcomes. For this purpose, we introduce a new approach that allows a
human expert just to select the desired points in a CAD system along the inspection path.
From the selected path data, the system computes temporal parametrization of the path,
which ensures the smoothness of the resulting robot trajectory for visual inspection. Our
approach then combines iterative learning control (ILC) and reinforcement learning to op-
timize robot velocity along the path. The numerical estimate of image sharpness is used to
produce the fastest possible motion without degradation of image quality. Hereinafter, we
showcase a concrete implementation of trajectory optimization and provide an account of
our approach. Through this example, we aim to offer insights into the practical application
of trajectory optimization and the algorithms used to achieve it.

Our method assumes that a CAD model of the workpiece to be inspected is avail-
able, thus, we developed an approach that allows factory engineers to specify the desired
inspection path in a CAD system in order to extract the path. Initial trajectory specifi-
cation from the CAD model is a three-step process that includes path specification, time
parametrization and trajectory generation. Our approach relies on the ability to easily
modulate and learn the robot’s velocity in a reduced number of parameters. This is one of
the main features of Dynamical Movement Primitives (DMPs) [47]. A variation of DMPs,
called Cartesian Space Dynamic Movement Primitives (CDMPs) [48], that except position
also allow specification of Cartesian orientation, was used in our system. Initial trajectory
is thus encoded in the form of CDMP with an explicitly defined velocity profile [49]. Once
we have the initial trajectory, we start the optimization process. This is a two-step process
where the velocity profile of the motion is learned by changing the weights that encode the
velocity of CDMP. In the first step of optimization, we execute the trajectory extremely
slowly and get the reference values for the image quality. After that, we execute the tra-
jectory fast and take it as a starting point for our learning algorithm. In the proposed
learning algorithm for speed modulation, we used both Iterative Learning Control (ILC)
[50], [51] and a simplified version of PoWER (Policy learning by Weighting Exploration
with the Returns) reinforcement learning (RL) algorithm [37]. These algorithms belong to
the group of black-box algorithms that do not require the availability of analytical models
that link utility functions (in our case image quality) and the robot behaviour (in our
case velocity of the end-effector holding the camera). Such algorithms have been applied
extensively for robot learning and policy search [22], [52], [53]. Since the analytical model
is not accessible, i.e., the function relating motion to image quality is a black-box, every
evaluation of this function requires the execution of visual inspection motion with a real
robot and estimating the quality of images acquired during the real robot motion [54]. At
the end of the learning, the resulting trajectory is slowed down only on segments where it
is necessary to keep the image quality as close as possible to the reference one.

1.1.2 Adaptive process behaviour

Hereinafter, we present an example related to the middle layer of the pyramid, which
pertains to the quality inspection process. This is still a scenario where the robot does not
physically interact with the environment, and therefore the outcome of its actions depends

1.1. Autonomous Generation of Robot Behaviour 7

solely on the generated movement.
The process of quality control of products and semi-products in the big manufacturing

lines is often done by an in-hand camera that is moved with a robot arm. This allows
for checking the object from several discrete viewpoints. With complicated products, the
number of necessary viewpoints can be high, creating a bottleneck in the production line.
The main idea of our approach is that some of the viewpoints can be excluded from this
check. We consider the relationship between the possible defects and production process
parameters. This relation, although usually not intuitive, can be found using NNs. In the
first part of the proposed approach, we present a NN architecture capable of predicting
defects that are most likely to happen. This network is trained on data from the functional
production line where inputs were readings from the sensors and outputs were manually
labelled defects. Based on the error prediction of a dedicated NN (C), and having the
knowledge (K) about the viewpoints that correspond to the predicted error, it is possible
to check the object only from some of the pre-defined, discrete viewpoints. However, this
expands the robot motion generation problem, because the robot does not follow predefined
trajectories anymore, but moves between (predefined) viewpoints in the order predicted by
the potential defects. Because of this, the pipeline for quality inspection is no longer always
the same, and there is a huge number of possible transitions between the given viewpoints.
Since all the required trajectories cannot be calculated in advance in practice, we need to
use motion planners that are able to generate fast and collision-free trajectories online.
As the second part of this topic, we present the existing motion planners and introduce a
benchmarking process for choosing the right planner for the given process.

1.1.3 Dynamic task and process behaviour generation

Hereinafter, we present an example of the bottom level of the pyramid, which is the most
complex. At this level, the robot interacts with objects in the environment, and the out-
come of its actions depends not only on the generated trajectory but also on the surrounding
environment. Through this example, we aim to illustrate the practical application of the
concepts presented in the bottom layer of the pyramid and highlight the challenges that
arise when dealing with environments that are subject to change.

Dynamic tasks are within a group of the most complicated and hard-to-engineer tasks
in robotics. The main feature of this task is that a robot interacts with an environment, and
it is not possible to accurately model or predict the behaviour. For this purpose, we present
a methodology for obtaining the desired skill in simulation (source environment) and then
adapting it to the real-world (target) environment. Since training from scratch using the
existing RL techniques has been already widely addressed in research [22], [23], we only
briefly introduce the possibilities of obtaining the knowledge in simulation but put the main
focus on the process of transferring the knowledge to the new environment. Comparison of
different methods requires vast amounts of testing. In our case, we use different simulators
that act as source and target environments. Our method relies on domain adaptation
using the combination of NN retraining enhanced with RL algorithms. In this approach,
the initial NN is trained on the knowledge from the source environment and only then
additionally adapted to the new – target environment. RL itself introduces problems when
the search space is too big. Therefore, our NNs have layers with reduced size, the lowest
being the latent space, where learning is done. In order to use NNs, we also need a
fixed number of inputs/outputs. Because of this reason, we have an intermediate layer of
encoding all our trajectories in a parametric form provided by the aforementioned DMPs.
The proposed combination of reduced search space, NN retraining, and RL increases the
overall performance of domain adaptation, therefore enabling application of our method
to real system. In addition to this, we briefly present and benchmark two methodologies

8 Chapter 1. Introduction

of storing the source domain knowledge that are based on probabilistic representations of
trajectories such as Probabilistic Movement Primitives (ProMPs) [55] and Probabilistic
Movement Dynamic Primitives (ProDMPs) [56]. Although the principle is the same -
adaptation within these networks is done in the same manner with retraining only the
small part, it has been reported that these methods have achieved higher robustness to the
changes from source to target environment [57].

1.2 Review of the Relevant Scientific Field

The proposed dissertation advances the current state of the art in the field of autonomous
robot learning of trajectories. It presents new and advanced methods in trajectory opti-
mization, trajectory generation and policy generation.

Optimization of robot trajectories has been the topic of many research papers. The
majority of the optimization techniques rely on having known models [7]–[9]. However, in
many cases, the model is not available or too complicated to formulate mathematically.
One such case is the image quality when performing continuous quality inspection, where
the lighting plays an important role. It is possible to approximate this model using the
NN, as shown in [11], but there is no guarantee that we have considered all the possible
parameters of the environment. Another approach is to use image post-processing, but
this method does not increase inherent information content, and a good original image can
provide more information [54]. In our method, we do not build a model but use known
learning methods and reinforcement learning in order to optimize the trajectory velocity
based on the image sharpness. To the best of our knowledge, no previous research addresses
the issue of speed optimization while preserving image quality.

Once we have a trajectory, we are able to optimize it. However, if trajectory is un-
known, we need to generate it. That is why a lot of work in current research is put into
autonomous generation of trajectories [58], [59]. The inspection of finished products for
quality control purposes has been identified as a common bottleneck in many industrial
processes. Checking the product using the in-hand camera and a robot arm can be par-
ticularly time-consuming. In our work, we develop a full end-to-end system that is able
to identify potential defects in the products based on the process parameters using a NN
and accordingly generate the robotic trajectories. Although path planners are not part of
our work, we present the methodology of choosing the best option from the plethora of
widely available ones [17]. To our best knowledge, a fully automated process of predicting
the defects and generating the trajectories has not been addressed in this manner in the
previous research.

In continuation of first optimizing a trajectory, and then generating a robot trajectory,
we expand our work by generating a robot trajectory that manipulates a dynamical ob-
ject into desired behaviour. For this purpose, RL and particularly deep RL has achieved
impressive success, but mainly in simulation environments [27], where it is safer and faster
to obtain data. Due to the modelling errors [27]–[29], policies learned in simulation do not
perform well when applied to the real system. This problem can be solved using TL, that
has been a topic of many review papers [27], [34]. Therefore, we propose learning a com-
plete policy in the source environment where it is relatively easy and fast to acquire data.
Single instances of task are first learned separately using RL. Once we obtained successful
examples of behaviour on multiple single instances, we encode this knowledge in NN that is
capable of generalizing the knowledge to previously unseen instances. Further, we combine
traditional domain adaptation with using the RL algorithm and NN backpropagation in
order to adapt the knowledge to the target environment. The adaptation is made only on
one part of the network, thus making it feasible to perform the more efficient few-shot TL.

1.3. Hypothesis 9

1.3 Hypothesis

We hypothesize that:

• Autonomous learning approaches such as reinforcement learning and iterative learn-
ing control can be used to optimize the motion. This motion is faster and easier to
acquire than human-calculated motion.

Motions for quality inspection in industrial environments are manually tuned or
calculated by the operator and, therefore, often suboptimal either in terms of the ex-
ecution time or the image quality. Our system is capable of extracting the trajectory
from the CAD model of the object and autonomously optimizing the velocity profile
of the trajectory better and faster than a human operator.

• Motion planners are capable of generating the robot trajectories online.

There is a wide range of trajectory planners available. We present the method of
choosing the most suitable motion planner that is capable of generating robot tra-
jectories for the given use-case online.

• AI can be used to accelerate the quality inspection process by predicting the possible
errors.

Potential errors in the final product are dependent on the production line parameters.
Because of a high number of parameters and non-intuitive numerical values, it can
be challenging for a person to notice a correlation between the error in the product
and the set of parameters. NNs are capable of solving this task for us. This way,
they accelerate the production line process by allowing us to exclude the product
errors that are highly unlikely to happen.

• Learned robot behaviour can be effectively reused in changed environments by ap-
plying RL in order to perform TL.

RL is capable of learning robot actions from scratch. In general, this process requires
a lot of time and fails if the environment parameters are changed. However, it can
be efficiently reused as the initial policy for TL.

• RL can be used to accelerate TL.

A combination of backpropagating the new data through the NN can be combined
with RL algorithms in order to achieve faster adaptation of the learned behaviour in
the case when the environment parameters are changed.

1.4 Contribution of the Thesis

In this thesis, we have developed and evaluated systems for:

1. Robot trajectory optimization

Execution of robot trajectories in industrial environments should be optimized with
respect to time. We present a trajectory optimization method using the example of a
quality inspection process in which the robot holds a camera and performs inspection
using continuous stream of images, as published in [54]. To enable optimization, we
introduce a system capable of autonomously extracting the trajectory from the CAD
model of the object. This trajectory is then encoded using CDMPs [48] with an
explicitly defined velocity profile [49] enabling us to reduce the dimensionality of the

10 Chapter 1. Introduction

problem. We have developed a model-free approach that depends only on a camera
focus measure [60], in which we apply a combination of ILC [50] and an RL algorithm
[37] to improve the cycle time of the quality inspection cell.

2. Motion planning based on AI-predicted process behaviour

Checking for all potential errors for each produced part in large-scale industrial pro-
cesses would create a bottleneck in the manufacturing pipeline. Therefore, we have
developed an AI-based system capable of excluding the errors that are not likely to
happen from the inspection process. The system is based on training an AE network
with data provided from the real production line. Once the AE network is trained,
we perform clustering using k-means and GMM methods in its latent space, based
on a labelled dataset of defective parts. Inspecting only for the predicted defects
implies different inspection process/trajectories for each part. To avoid manually
generating all possible trajectories, we have implemented an approach using motion
planners [58]. Since only some of them are capable of generating the trajectories in
real-time, we use a benchmarking framework [59] to determine which of the planners
can successfully generate trajectories for our specific use-case of inspecting parts in
the car industry [18].

3. Fully autonomous learning

In order to acquire new policies fully autonomously from scratch, we present two
deterministic methods for generating examples in the source environments [61], [62],
storing the obtained knowledge in NNs, and adapting it using a small amount of
data from the target environment through TL techniques [31], [46]. Our main fo-
cus is on advancing TL methods to enable their application with real-life realistic
number of iterations. We accelerate traditional TL methods that are based on back-
propagation by applying an additional RL algorithm to the parameters of the NNs,
and we demonstrate our approach on a throwing action using a robot arm [31], and
using a humanoid robot [46]. Additionally, since there are recent publications that
report probabilistic approaches are more robust to changes in the environment [57],
we present and compare two NN architectures capable of predicting the distribution
of trajectories, showing how to offer more diversity while maintaining a lower error
[63].

11

Chapter 2

Trajectory Optimization for Higher
Productivity

The most widely used and, at the same time lowest by its complexity, technique in au-
tonomous robot behaviour generation is the trajectory optimization. This is the reason
why in our pyramid that classifies robot generation, it is put on the top - Figure 2.1. In this
case, the trajectory that is able to execute the task successfully is already known, but there
is still space for further improvement in the sense of making it faster, smoother or more
energy efficient. All the other techniques, that are by the complexity ranked higher in our
pyramid, are able to autonomously generate non-optimal trajectory but further we need to
use trajectory optimization technique in order to improve it. The main characteristics of
these techniques are that the trajectory is known but not optimal, system behaviour does
not depend on the environment, and it is mainly used for repetitive industrial tasks.

Optimization

Figure 2.1: Trajectory optimization is set to be on the top of our classification pyramid
since it is the simplest by complexity and the most widely used.

Optimization is mainly used in industrial environments where huge number of products
need to be manufactured in the limited time. Moreover, since the product types are being
changed more frequently, it is also important that modification of the production line can

12 Chapter 2. Trajectory Optimization for Higher Productivity

be performed as quickly as possible. It is a known problem that setting up or modifying
any production line sections can be tedious and requires human expert engagement. The
same stands also for the sections where the quality control is performed. The performance
is, therefore, dependent on the skill of an expert being in charge of setting up robot
velocities and prone to having suboptimal results. To address this issue, in this chapter,
we introduce a new method for specifying visual inspection trajectories based on CAD
models of the workpieces to be inspected. Our goal is to enable human experts to select
the desired points on the inspection path within a CAD system and making the rest of the
process fully automated. The system computes the temporal parametrization of the path
to ensure smoothness of the resulting robot trajectory. We also propose a new learning
method that combines iterative learning control (ILC) and reinforcement learning (RL) to
optimize robot speed along the specified path. The method takes into account the image
quality and produces the fastest possible motion that does not compromise the quality of
the image.

2.1 Methodology

Our approach involves optimizing the robot trajectory through a model-free method, which
relies on the system’s ability to adjust the velocity of the trajectory. The optimization is
based on an image quality measure, which serves as the reward function for evaluating the
performance of the executed trajectory. We first introduce the image quality measure to
quantify the performance of the trajectory. Then, we describe how we define the motion
trajectories in order to achieve quick and easy velocity modulation in a small number of
parameters. Finally, we provide a detailed explanation of the optimization procedure used.

2.1.1 Image quality measures

Visual quality inspection requires sharp, well-focused images. Here, we analyze possible
measures that can be applied to measure image quality.

The first step in our procedure is to determine the distance to the workpiece at which
the in-hand camera captures well-focused images. This is necessary to ensure good and
constant image quality because most industrial cameras on the market do not provide
autofocus. For the cameras that do provide autofocus ability, there is little information
about how the focus is determined [15]. For cameras with a fixed focal length, a sharp
image is obtained only if the camera is placed at the proper distance from the observed
workpiece. To automate this process and avoid a subjective sharpness assessment by the
engineer, Bevec et al. [15] developed an approach to automatically place the in-hand
camera at an appropriate distance from the workpiece so that the workpieces’ surface is in
focus. The proposed autofocus algorithm uses the distinct bell-shape characteristics of the
squared gradient focus measure, which has the highest value when the picture is sharp. By
moving the hand-held camera perpendicularly to the workpiece, towards and away from
the workpiece, the robot finds the appropriate distance that results in the sharpest image,
with results surpassing manual settings [15].

Once the proper distance for obtaining sharp images has been determined, we need to
make sure that the image quality is preserved as the robot moves the camera along the
workpiece to be inspected, i.e., we need to prevent motion blur. There are many quality
measures (also called focus measures) proposed in the literature to estimate the sharpness
of the acquired images. They are based either on computing the first or second order
image derivatives, image histograms, correlation and data compression [60]. The methods
that employ derivatives use different operators to compute them, such as Sobel operators

2.1. Methodology 13

(horizontal, vertical, combined), Scharr operators, Laplacian, and others. For example,
the formula to compute the squared magnitude of the horizontal gradient is given by:

ϕh =
W−1∑
x=0

H−2∑
y=0

(I(x, y + 1)− I(x, y))2 , (2.1)

where H and W are respectively the height and width of the image and I(x, y) are the
intensity values at pixel (x, y). Similarly, the squared magnitude of the vertical gradient is
given by:

ϕv =
W−2∑
x=0

H−1∑
y=0

(I(x+ 1, y)− I(x, y))2 . (2.2)

To test which image quality measure is the most appropriate, i. e., best for the condi-
tions that typically arise during the quality inspection, we set up an example robotic cell
for visual quality inspection. We programmed the robot equipped with an in-hand camera
to move along a straight line above a flat textured surface at the fixed distance determined
by the above-described autofocus algorithm. The trajectory was programmed as a quintic
polynomial with the given initial and final position and the initial and final velocities and
accelerations set to zero [64]. The duration of movement was set to 3, 20, or 60 seconds,
which resulted in trajectories with different speeds.

Figure 2.2 shows the relative value of the computed focus measures with respect to the
initial values, i. e.

ϕ(t/Te)

ϕ(0)
, (2.3)

where Te is the duration of the motion execution. The values in Figure 2.2 were obtained
by normalizing the results of the focus measures with the number of pixels in the image.
The durations of movements were normalized to 1. Figure 2.2 shows that the focus measure
values decrease with the increased speed, as the values in plot c), which present the results
gathered during fast camera motion, are much lower. Fast motion, therefore, introduces
more image blur, which decreases the quality of the acquired images. Since focus measures
are noisy, we used filtered values in learning. Because learning is performed off-line, we
filtered them with a zero-phase low-pass filter.

Next, we computed the relative values of the focus measures for the fastest (3 seconds)
and slowest (60 seconds) camera motion, i.e.

ϕr =
ϕ3

(
t̃
)

ϕ60
(
t̃
) . (2.4)

where 0 ≤ t̃ ≤ 1 denotes the normalized duration of motion for each movement. The results
for the top 10 focus measures (see Figure 2.2) are shown in Figure 2.3. We can see that the
squared horizontal gradient focus measure (marked Gradient H) is the most reactive to the
changes of velocity. Note that the values would be the same for the squared vertical gradient
if the camera were rotated by 90◦. We therefore used the sum of squared magnitudes of
vertical (see Eq. (2.2)) and horizontal (see Eq. (2.1)) gradient focus measures to evaluate
the sharpness of the image.

2.1.2 Specification of motion trajectories for visual quality inspection

We assume that a CAD model of the workpiece to be inspected is available. Here, we
describe a three step process to specify the initial trajectory for visual quality inspection.
It should be noted that CAM software packages can provide trajectories for typically 5-axes

14 Chapter 2. Trajectory Optimization for Higher Productivity

a)

b)

c)

Figure 2.2: Focus measures ϕ at different speeds. Plot a): 60 seconds motion. Plot b):
20 seconds motion. Plot c): 3 seconds motion. The time axis is normalized to 1 for all
graphs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gradient H Brenner V Gradient V

Brenner H Sobel V (2nd) Prewitt H

Roberts H Difference H Sobel H

Sobel cross (2nd)

Figure 2.3: Relative change of the filtered focus measures for 10 different measures as a
function of normalized time.

CNC machines. However, robot motion for visual quality control has to be fully specified
in all 6 dimensions of the camera motion. Additionally, CAM-software-generated paths

2.1. Methodology 15

usually do not take care of discontinuities in the angular velocity that arise due to the
sudden changes in the curvature of the observed surface. We have therefore implemented
our own temporal parametrization of paths exported directly from a CAD system. Besides
generating smooth initial trajectories for visual quality inspection, this way we also avoid
high costs associated with the purchase of plug-ins needed for trajectory generation from
CAM systems.

Path specification

To specify a path, the CAD model of the workpiece is imported into the CAD system
and a human expert interactively selects 3-D points on the workpiece using a graphical
user interface of the CAD system. Standard CAD systems such as PCT Creo [65] can be
used for this purpose. The human expert selects the start and end point of each linear
segment on the surface of the workpiece of the CAD system or sketches the path in 2D. The
CAD system then projects the specified linear or sketched 2D path onto the surface of the
workpiece. Once projected onto the surface of the workpiece, the path is sampled by the
CAD system, where the expert defines the sampling by specifying the desired Euclidean
distance between consecutive points.

The orientations along the path are determined by gathering the normals to the work-
piece surface nnn ∈ R3 and tangents of the path ttt ∈ R3. Both can be computed by the
CAD system at each sampling point on the path. Since the path lies on the surface of
the workpiece, its tangent is orthogonal to the workpiece surface normal. Thus, at each
sampling point, a 3-D rotational matrix specifying the orientation of the camera can be
defined as follows

RRR =
[
ttt ttt×nnn −nnn

]
∈ R3×3. (2.5)

Note that the camera orientation around the optical axis, which is parallel to the surface
normal of the workpiece but in the opposite direction, is often not important in visual
quality inspection tasks and could be selected arbitrarily. The above approach using Eq.
(2.5) is reasonable as it directs the camera perpendicularly to the workpiece (provided
the z axis of the tool center point is aligned with the camera optical axis). In addition,
one of the image axes is aligned with the direction of robot motion (provided the camera
coordinate system is aligned with the robot base coordinate system). The rotation matrices
representing orientation are transformed to quaternions before export.

The result is a dense sequence of positions and orientations on the desired path together
with surface normals (all exported from the CAD system)

{{p̃ppj,k, q̃qqj,k, nnnj,k}
Kj

k=0}Kj=1. (2.6)

They are given in the workpiece coordinate system. Here p̃ppj,k ∈ R3 are the positions,
q̃qqj,k ∈ R4 the orientations specified as unit quaternions, and nnnj,k ∈ R3 the unit surface
normals at points p̃ppj,k. The unit quaternions q̃qqj,k are computed by transforming the rotation
matrices RRRj,k generated using Eq. (2.5) at p̃ppj,k. Every subsequence {p̃ppj,k, q̃qqj,k, nnnj,k}

Kj

k=0

consists of twice continuously differentiable positions and orientations whereas transitions
between subsequences (segments) can be discontinuous. These data are determined in the
CAD system and are exported in STEP format.

Next, we lift the inspection paths to the observation distance df ∈ R determined by the
autofocus procedure described in [15] and transform the lifted paths to the robot coordinate
system. The following transformation is applied to every subsequence, j = 1, . . . ,K,

{pppj,k, qqqj,k}Kj

k=0 = {qqqw ∗ (p̃ppj,k + df nnnj,k) ∗ qqqw + tttw, qqqw ∗ q̃qqj,k}
Kj

k=0, (2.7)

16 Chapter 2. Trajectory Optimization for Higher Productivity

where tttw ∈ R3 and qqqw ∈ R4 are the position and orientation of the workpiece in the robot
base coordinate system. The pose of the workpiece in the robot base coordinate system is
usually determined by vision, where the camera is calibrated to the robot base coordinate
system. This way we obtain the desired paths {pppj,k, qqqj,k}Kj

k=0 expressed in the robot base
coordinate system.

Evolution of time along the inspection path

In the second step, we specify a suitable evolution of time for the desired inspection trajec-
tory. Given a smooth sequence of poses {pppj,k, qqqj,k}Kj

k=0 on the robot path, we can estimate
the arc length along the path as follows

sj,k = sj,k−1 + ∥pppj,k − pppj,k−1∥, k = 1, . . . ,Kj , sj,0 = 0. (2.8)

For orientation, we estimate the angle length instead of the arc length

ξj,k = ξj,k−1 + 2∥ log(qqqj,k ∗ qqqj,k−1)∥, k = 1, . . . ,Kj , ξj,0 = 0. (2.9)

Thus the overall arc length of the path is equal to Lj = sj,Kj while the overall angle
length of the path is equal to ζj = ξj,K,j . We assume that (pppj,k, qqqj,k) ̸= (pppj,k−1, qqqj,k−1),
k = 1, . . . ,Kj . If any two consecutive locations are the same, we delete the duplicates as
they do not contribute to the progress along the path.

To specify the evolution of time, we parametrize the weighted sum of arc and angle
length with time. First the desired duration of inspection movement is calculated as follows

Tj = α(Lj + βζj), (2.10)

where α, β > 0 are suitable constants, which need to be carefully selected by the inspection
path designer. Alternatively, the designer can specify the times Tj to traverse each path
segment instead of α. We then time-parametrize the weighted sum of arc and angle length,
i. e.

r(t) = s(t) + βξ(t), (2.11)

with a quintic polynomial [64], setting r(0) = ṙ(0) = r̈(0) = ṙ(Tj) = r̈(Tj) = 0, r(Tj) =
Lj + βζj . Note that the resulting polynomial r is monotonically strictly increasing on the
interval (0, Tj), i.e. ṙ(t) > 0, 0 < t < Tj . For any given arc length sj,k calculated in Eq.
(2.8) and angle length ξj,k calculated in Eq. (2.9), we can therefore easily calculate the
times at which they are reached by inverting function r(t)

tj,k = r−1(sj,k + βξj,k), k = 0, . . . ,Kj . (2.12)

Bisection or Newton’s method can be used for this purpose. The time sequence {tj,k}Kj

k=0

is guaranteed to be monotonically strictly increasing because (pppj,k, qqqj,k) ̸= (pppj,k−1, qqqj,k−1),
k = 1, . . . ,Kj .

Trajectory generation and encoding

In the third step, we encode the trajectory into a sequence of speed-scaled Cartesian
Dynamic Movement Primitives (CDMPs) [48]. For this purpose, we must first calculate
the linear and angular velocities and accelerations.

The time derivatives of pppj,k, i.e. linear velocities, and angular velocities ωωωj,k, can be
computed using numerical differentiation

ṗppj,k =
pppj,k − pppj,k−1

tj,k − tj,k−1

ωωωj,k =
2 log(qqqj,k ∗ qqqj,k−1)

tj,k − tj,k−1

, k = 1, . . . ,Kj − 1. (2.13)

2.1. Methodology 17

By design we have ṗppj,0 = ṗppj,Kj
= ωωωj,0 = ωωωj,Kj = 0 as the robot should be at rest at

the beginning and the end of each inspection segment. Finally, the linear and angular
accelerations are computed by numerical differentiation

p̈ppj,k =
ṗppj,k − ṗppj,k−1

tj,k − tj,k−1

ω̇ωωj,k =
ωωωj,k −ωωωj,k−1

tj,k − tj,k−1

, k = 1, . . . ,Kj − 1. (2.14)

By design we have p̈ppj,0 = p̈ppj,Kj
= ω̇ωωj,0 = ω̇ωωj,Kj = 0. The data calculated in Eqs. (2.7),

(2.13) and (2.14) can then be used to compute a sequence of speed-scaled CDMPs.
A Speed-Scaled Cartesian space Dynamic Movement Primitive (CDMP) consists of two

parts: the position and orientation trajectory. The position trajectory is specified in the
same way as in standard DMPs [47]. The orientation trajectory, however, is specified by
unit quaternions. Since unit quaternions do not form a linear vector space, the orientational
part of the CDMP requires special treatment when computing its parameters and for its
integration.

The CDMP is based on two dynamic systems: phase system and transformation system.
The phase system is used to avoid explicit dependency of the trajectory on time and for
synchronizing the positional and orientational degrees of freedom along the trajectory. The
phase dynamics is defined as:

ν(x)ẋ = −αxx, (2.15)

where ν(x) > 0 is a speed scaling function defined in Eq. (2.23), αx is a positive constant
and x is the phase that starts at 1 and converges to 0 as the trajectory goal is reached.

The transformation system for position trajectory ppp and orientation trajectory qqq is
specified with the following differential equations:

ν(x)żzz = αz(βz(ggg
p − ppp)− zzz) + fffp(x), (2.16)

ν(x)ṗpp = zzz, (2.17)
ν(x)η̇ηη = αz (βz2 log (ggg

o ∗ qqq)− ηηη) + fffo(x), (2.18)

ν(x)q̇qq =
1

2
ηηη ∗ qqq, (2.19)

where gggp ∈ R3 is the goal position and gggo ∈ R4 the goal orientation of the movement.
In a CDMP, the orientation is represented by unit quaternions qqq ∈ R4. The parameters
zzz, ηηη ∈ R3 denote the scaled linear and angular velocity (zzz = ν(x)ṗpp, ηηη = ν(x)ωωω). For more
details on quaternion product ∗, conjugation qqq, and the quaternion logarithm log (qqq), see
[48]. The nonlinear functions fffp, fffo : R 7→ R3, also called forcing terms, are defined as

fffp(x) = DDDp

∑N
i=1www

p
iΨi(x)∑N

i=1Ψi(x)
x, (2.20)

fffo(x) = DDDo

∑N
i=1www

o
iΨi(x)∑N

i=1Ψi(x)
x. (2.21)

where the weights wwwp
i , www

o
i ∈ R3, i = 1, . . . , N, respectively encode the position and orienta-

tion parts of the trajectory and N is equal to the number of radial basis functions that are
used to encode the trajectory. They have to be learned, for example directly from an input
Cartesian trajectory {pppk, qqqk, ṗppk, ωωωk, p̈ppk, ω̇ωωk, tk}Kk=0. The scaling matrices DDDp, DDDo ∈ R3×3

can be set toDDDp =DDDo = III. Other possibilities are described in [48]. The nonlinear forcing
terms are defined as a linear combination of radial basis functions Ψi

Ψi(x) = exp
(
−hi (x− ci)

2
)
, (2.22)

18 Chapter 2. Trajectory Optimization for Higher Productivity

where ci are the centers and hi the widths of the radial basis functions. The distribution
of weights can be set to ci = exp

(
−αx

i−1
N−1

)
, hi =

1

(ci+1 − ci)2
, i = 1, . . . , N , hN = hN−1

[66]. The goal position and orientation are usually set to the final position and orientation
on the desired trajectory, i. e. gggp = ppptK and gggo = qqqtK . A more detailed CDMP description
and auxiliary math are provided in [48].

The temporal scaling function ν(x) defines the speed profile of the movement. It is
defined as a weighted combination of kernel functions

ν(x) = τ +

∑M
i=1w

ν
i Ψi(x)∑M

i=1Ψi(x)
. (2.23)

Here τ > 0 is the time constant usually set to the initial desired duration of motion.
M specifies the number of kernel functions Ψi, which are defined as in Eq. (2.22). The
parameters wν

i ∈ R are initially set to zero. They are included to enable nonuniform speed
scaling along the trajectory. Note that phase x is used also to drive the scaling of speed.

In the case of discontinuities along the consecutive trajectories, such as for example
around a perpendicular edge, the robot needs to move from the end of one visual quality
inspection trajectory to the beginning of the next one. Visual quality inspection is not
applied during such transition movements. Hence the robot can move at a maximal velocity
between the end and start configuration along the shortest path between them. One
can apply trapezoidal velocity profiles with maximal joint velocities [64] to generate the
transition movements.

The next step is to optimize the duration of robot motion for visual quality inspection.
We can either optimize each trajectory segment separately or we can combine some of
the segments into one CDMP if there are no spatial discontinuities between them. The
speed of the resulting CDMPs should then be optimized to enable quick but at the same
time highly precise visual quality inspection. This optimization process is described in the
following subsection.

2.1.3 Optimization objective

Once the initial visual quality inspection motion has been specified as a sequence of smooth
trajectories encoded by a sequence of speed-scaled CDMPs, we can proceed with the opti-
mization of the speed of robot motion. The aim is to minimize the time of motion along
each visual inspection path segment without degrading the quality of images acquired while
the robot moves the hand-held camera compared to images acquired while the camera is
static. This is equivalent to determining the highest speed of motion that does not degrade
the image quality.

We proceed with the formulation of the optimization problem to compute such a mo-
tion. As stated above, the execution time decreases if the speed of motion increases. We
can alter the speed of a CDMP without changing its spatial course by modifying the tem-
poral scaling factor ν defined in Eq. (2.23), i.e. by modifying the weights wν

i , i = 1, . . . ,M .
Thus the optimization problem can be formulated as follows:

min
{wν

i }Mi=1

Te

s.t. |yd(x)− y(x)| ≤ ε, ∀x,
0 < ν(x), ∀x,

(2.24)

where Te > 0 is the execution time, i.e. the time needed to move the camera along the
complete visual inspection path, x denotes the phase of motion computed by integrating

2.1. Methodology 19

the CDMP Eq. (2.15), and ε > 0 is a small constant that compensates for the system noise
and specifies the allowed deviations from the ideal image quality. Image quality measure
y is estimated using the following formula

y(x) = ϕh(x) + ϕv(x), (2.25)

where ϕh(x) and ϕv(x) are defined as in Eq. (2.1) and (2.2), respectively. Other suitable
measures for image quality could also be employed. yd in optimization problem (2.24)
denotes the ideal image quality measure obtained when the camera does not move. Since
the mathematical model specifying the relationship between the speed profile ν on the one
side and execution time Te and image quality measure y on the other side is not known, we
can only apply black-box optimization algorithms [53] to solve this optimization problem.

Due to the lack of models, every iteration of the optimization process requires us to
execute the real robot motion along the visual inspection path. Among the possible black-
box optimization algorithms that could be utilized to solve the optimization problem (2.24),
we propose to apply a two-step process, starting with Iterative Learning Control (ILC)
and followed by a RL method based on policy search. The former exploits feedback error
control law and converges faster in general, while the latter can deal with more general cost
functions and to some extent avoid local minimum due to the randomized search process.
Initial results on ILC application were presented in [67].

2.1.4 Optimizing the speed of motion by iterative learning control (ILC)

ILC is a technique for improving the transient response and tracking the performance of
processes, machines, equipment, or systems that execute the same trajectory, motion, or
operation over and over [50]. The main idea of ILC is to iteratively modify the input into
the system until the output has been improved.

Systemun yn

ydLearning
Controller

un+1

Figure 2.4: Basic ILC approach scheme.

Figure 2.4 illustrates its basic operational principle. Input and output signals are
defined in the time interval t ∈ [0, T]. Subscript n indicates the trial or repetition number.
When input signal un(t) is applied to the system, it produces the output yn(t). Based on
the difference between the actual and the desired output, en(t) = yd(t) − yn(t), and the
corresponding input un(t), the new modified input signal is calculated as

un+1(t) = Q[un(t) + λen(t)], (2.26)

where λ > 0 is the gain that defines the size of the update step and Q is the low-pass filter
applied to smoothen the signal.

20 Chapter 2. Trajectory Optimization for Higher Productivity

The scheme described above is often referred to as causal ILC. Further variations of
the ILC approach are discussed in [51]. Hereinafter, we continue with the application of
Iterative Learning Control (ILC) to speed up robot motion along the path for visual quality
inspection.

With CDMPs, nonlinear speed scaling can be achieved by modifying the weights of the
speed scaling factor ν defined in Eq. (2.23). This is possible because ν modifies the speed
of motion specified by integrating Eqs. (2.15) – (2.19) without changing the spatial course
of motion. ILC is applied along the phase of motion instead of time. This is important
because ILC can only be applied if samples are properly aligned between iteration steps.
In terms of expressions explaining the casual ILC, the control scheme shown in Figure 2.4,
and by replacing time with phase, the ILC control signal is specified as u(x) = ν(x), while
the ILC output signal is computed as image quality y specified in Eq. (2.25).

The learning process is initiated by gathering the desired values yd(x) for image quality,
as defined in Eq. (2.25). This is done by moving the robot arm holding the camera along
the desired inspection path at a slow speed that does not affect the quality of the captured
images. Namely, high speed motion could result in blurred images. We can achieve this by
setting τ in Eq. (2.23) to a high positive value τslow and the weights to zero. The image
quality is then computed at camera frequency (typically 30 Hz). We obtain {yd(tp)}Pp=1,
where yd(tp) = ϕh(tp) + ϕv(tp) and P is the number of captured images during motion
execution. To align the measurements captured at different speeds, we need to sample the
computed image quality values along the phase of motion. Using Eq. (2.15) and x(0) = 1,
these values can be sampled as follows in the phase domain

{yd(xp)}Pp=1, xp = x(tp) = exp

(
− αx

τslow
tp

)
. (2.27)

ILC iteratively adapts the speed of robot motion. Thus at each iteration step, a dif-
ferent number of images is captured and a different number of image quality measures is
calculated. We denote the times at which the images are captured in the n-th iteration
step by tn,p, p = 1, . . . , Pn. The newly computed image quality measures can be aligned
with the desired quality measures from Eq. (2.27) by computing the phases xn,p, along
the executed trajectory, where xn,p are computed by integrating Eq. (2.15). We now have
the problem that the newly computed phases xn,p do not exactly match the phases xp
at which the desired quality measures were obtained. This problem is resolved by cubic
interpolation of the newly acquired image quality measures {y(xn,p)}Pn

p=1 and computing
the interpolated values at xp, p = 1, . . . , P. We denote these newly computed values as

{yn(xp)}Pp=1. (2.28)

To initialize the ILC algorithm, we set the initial ILC input signal to u0 = ν0 = τfast,
τslow > τfast > 0, wν

i = 0, ∀i. τfast is set to a small value so that the initial robot motion is
too fast to capture high quality images. Thus the speed of motion should be decreased –
which is equivalent to increasing ν(x) – until the motion is slow enough to capture good
quality images. Following Eq. (2.26) and using image quality measure as output signal, at
each step the updated input signal (before filtering) is given as

νn(xp) + λ(yd(xp)− yn(xp)). (2.29)

The following system of linear equations can then be solved to update the weights of the
speed profile:

XXXwwwν
n+1 =

 νn(x1) + λ(yd(x1)− yn(x1))− τ
...

νn(xP) + λ(yd(xP)− yn(xP))− τ

 , (2.30)

2.1. Methodology 21

Algorithm 2.1: Procedure for optimizing the speed profile for visual quality
inspection by ILC.

procedure LearnSpeedProfile
set wν

i,1 = 0, i = 1, . . . ,M ;
record {yd(xp)}Pp=1 for slow motion with high τ = τslow > 0;
set τ for fast motion to small positive τ = τfast;
set n = 0
repeat

increase n;
execute motion with current {wν

i,n}Mi=1 by integrating
Eqs. (2.15) – (2.19) and gather image quality measures {yn(xp)}Pp=1;

compute {wν
i,n+1}Mi=1 by solving Eq. (2.30)

until
∑P

p=1 yn(xp) > γ
∑P

p=1 yd(xp)

where

wwwν
n+1 =

w
ν
1,n+1
...

wν
M,n+1

 , XXX =


ψ1(x1)∑M
i=1 ψi(x1)

. . .
ψM (x1)∑M
i=1 ψi(x1)

...
. . .

...
ψ1(xP)∑M
i=1 ψi(xP)

. . .
ψM (xP)∑M
i=1 ψi(xP)

 .

The ILC update specified by Eq. (2.26) contains a low-pass filter denoted by Q. This filter
is not included in Eq. (2.29) but is implemented in the proposed approach by computing
the update as a solution to the system of linear equations (2.30). Since there are always
more measurements (P) than basis functions (M), this system is overdetermined, which
results in smoothing of the signal u = ν, thus effectively implementing the low-pass filter
Q.

The goal of learning is to generate a new speed profile that is as fast as possible without
significantly diminishing the desired image quality measure yd. Thus the learning process
is halted once the overall image quality measure becomes similar to the desired quality
measure, i. e.

P∑
p=1

yn(xp) ≈ γ

P∑
p=1

yd(xp), 0 < γ < 1. (2.31)

Parameter γ needs to be specified by a user. The algorithm summarizing the above-
described procedure is provided in Algorithm 2.1.

Note that in the proposed approach, we start with a trajectory that is too fast to capture
high quality images, thus the initial image quality values are low. ILC then increases ν(x)
to slow down the robot motion, thereby increasing the quality of captured images. This
is better than to start with a slow trajectory and gradually increase its speed because the
difference in image quality measure (feedback) is more evident in faster movements, which
leads to faster adaptation. By stopping the iteration before reaching the desired image
quality measure (due to γ < 1), we ensure that the ILC algorithm does not slow down the
motion too much.

2.1.5 Speed profile refinement by reinforcement learning (RL)

Although ILC is able to achieve significant improvements in quite a small number of iter-
ations, its progress stalls once its output approaches the desired one. While this problem

22 Chapter 2. Trajectory Optimization for Higher Productivity

can be addressed with variable gains [51], such an approach often leads to algorithmic
instability. In this section, we propose to apply reinforcement learning (RL) to fine-tune
the speed profile computed by ILC.

There are many possible RL methods that could be used for this purpose. We selected
reward-weighted policy learning with importance sampling (RWPL), which is a simplified
variant of Policy Learning by Weighting Exploration with the Returns (PoWER) method
[37], for model-free speed profile optimization [68]. It uses a parametrized skill policy and
a reward function to maximize the expected return of skill performance trials.

Under the assumption that there is only terminal reward and that only a single basis
function is active at any given time (note that this is only approximately true for CDMPs),
the control policy parameters θn are updated by RWPL as follows

θn+1 = θn +
⟨(Θn − θn)R(Θn)⟩w(πk)

⟨R(Θn)⟩w(πk)

, (2.32)

where w(πk) denotes the policy parameters of k-th iteration. Θn = {θ∗
k}nk=1 denotes the

set of all policy parameters θ∗
k executed until the n-th iteration and R > 0 the terminal

reward received at the end of each rollout. ⟨·⟩w(πk)
denotes importance sampling [69]. Its

role is to select a predefined number of best trials to compute the update in order to reduce
the number of iterations until optimal policy is learnt. In the context of speed optimization,
parameter θ corresponds to parameters {wν

i }Mi=1 that form the temporal scaling factor ν
defined in Eq. (2.23).

The update rule specified by Eq. (2.32) is equivalent to

θn+1 =

∑m
i=1Rin(n,i)θ

∗
in(n,i)∑m

i=1Rin(n,i)
, (2.33)

where function in(n, i) selects the trial with the i-th highest reward from the trial set
{θ∗

k, Rk}mk=1, m is the number of best trials selected by importance sampling, and the
exploration parameters are computed by adding exploration noise to the current estimate
θn

θ∗
n = θn + εn. (2.34)

Here, εn is zero-mean Gaussian noise. Its variance Σ is usually a diagonal matrix and
needs to be specified by a user. High variance leads to a more thorough exploration of the
parameter space but may cause oscillations around the solution, while small variance can
get stuck in a local minimum.

When applying this method to our velocity optimization problem, exploration noise was
added to the current weights describing the parametric policy θn = wwwν

n = [wν
1,n, . . . , w

ν
M,n]

T,
then robot motion was executed, and the cumulative reward Rn was calculated for the
current trial. Importance sampling then selects a subset of best trials to update the weights
using Eq. (2.33). We used exploration noise with a relatively small variance because it is
safer for the real robot execution and because ILC already created a decent solution. Thus
only a small amount of exploration should be sufficient.

Besides selecting the appropriate method, the specification of the reward function is
the most important issue in RL. We took inspiration for creating our reward system from
the cliff walking problem [70]. Based on this inspiration, at any of the sampled images, our
intermediate reward system gives zero reward if the image quality measure is significantly
lower than the one learned by ILC. Similarly, the intermediate reward is set to zero if the
image quality measure is significantly higher than the reference (desired) value at any of
the sampled images because in this case, the inspection process is unnecessarily slowed

2.2. Experimental Evaluation and Results 23

down. To compute intermediate rewards, we first define the following values

rh/v,n,p =


0 if ϕh/v,n,p ≤ ϕh/v,p −∆ϕh/v,p
0 if ϕh/v,n,p ≥ ϕh/v,p +∆ϕh/v,p
2 if r̃h/v,n,p > 2

r̃h/v,n,p otherwise

, (2.35)

where

r̃h/v,n,p =
1

ϕh/v,p +∆ϕh/v,p − ϕh/v,n,p
, (2.36)

ϕh/v,p = (ϕh/v,d,p + ϕh/v,ILC,p)/2, (2.37)

∆ϕh/v,p = |ϕh/v,d,p − ϕh/v,ILC,p|/
√
2. (2.38)

In the above equations, index h/v denotes either the horizontal or vertical gradient related
values. ϕh,n,p and ϕv,n,p respectively denote the horizontal and vertical image quality
measures specified in Eqs. (2.1) and (2.2) and computed at the p-th image captured in
the n-th trial. Just like when implementing ILC, these values are aligned along the phase
and interpolated to the phases at which the reference image quality measures ϕh,d,p and
ϕv,d,p were obtained. Similarly, ϕh,ILC,p and ϕv,ILC,p denote the aligned and interpolated
image quality measures obtained when executing the inspection trajectory generated from
the parameters computed by ILC.

To favor short execution times, we also define a terminal reward term exp(−κTe,n),
where κ is a user-selected positive constant and Te,n denotes the execution time in the
n-th iteration. The cumulative reward Rn for the n-th trial is computed by accumulating
the intermediate rewards rh,n,p and rv,n,p and adding the terminal reward

Rn =
1

4P

P∑
p=1

(rh,n,p + rv,n,p) + exp(−κTe,n), (2.39)

where P is the number of images gathered to compute the reference quality measures (equal
to P in Eq. (2.27)). The value of the sum of intermediate rewards and the value of the
terminal reward are both between 0 and 1.

Policy learning algorithms other than RWPL could be used for optimizing the speed of
motion along the path. However, the number of executions with the real robot is usually a
prohibitive factor for methods that require many roll-outs before they update parameters.
In this sense, the proposed RWPL method has an advantage over, for example, CMA-ES
that requires several executions before an update in order to estimate the natural gradient
[53]. On the other hand, among the RL methods, PoWER, RWPL and PI2 behave similarly
in terms of sample efficiency [53]. Section 2.2.4 compares the effectiveness of CMA-ES and
RWPL when applied to the problem of speed optimization.

For clarity, a flowchart of the overall approach is provided in Figure 2.5. In this
flowchart, ILC-related operations are in the yellow rectangle while RWPL-related oper-
ations are in the green rectangle. The optimization process is halted when both ILC and
RWPL are completed. The last speed scaling parameters wwwν = [wν

1 , . . . , w
ν
M]T are taken

as the final result.

2.2 Experimental Evaluation and Results

In this section, we present several experiments to evaluate the key aspects of the proposed
approach: specification and time-parametrization of trajectories for visual inspection and
the performance of the speed optimization algorithm.

24 Chapter 2. Trajectory Optimization for Higher Productivity

Record reference image
quality measure 𝑦𝑦𝑑𝑑 by
executing slow motion

trajectory

𝑦𝑦𝑛𝑛 < 𝛾𝛾 𝑦𝑦𝑑𝑑 ,
𝛾𝛾 ∈ (0,1)

Record new image quality
measure 𝑦𝑦𝑛𝑛 with weights

𝒘𝒘𝑛𝑛
𝜈𝜈

Use ILC to generate weights
𝒘𝒘𝑛𝑛+1
𝜈𝜈

True

False

Take the weights 𝒘𝒘𝑛𝑛
𝜈𝜈 of

the final ILC trajectory
that outputted image

quality measure 𝑦𝑦𝑛𝑛 and
use them to compute

initial policy for RPWL

𝑛𝑛 ≤ 𝑛𝑛max

True
Add search noise 𝜖𝜖 to

weights 𝒘𝒘𝑛𝑛
𝜈𝜈

Choose the best trials
using importance sampler
and generate new weights

𝒘𝒘𝑛𝑛+1
𝜈𝜈

Record new image quality
measure 𝑦𝑦𝑛𝑛+1

with new
weights 𝒘𝒘𝑛𝑛

𝜈𝜈 + 𝜖𝜖

𝑛𝑛++

False
Store weights 𝒘𝒘𝑛𝑛

𝜈𝜈

End

Start ILC RWPL

𝑛𝑛++

Set 𝒘𝒘1
𝜈𝜈 = 0, 𝜏𝜏 = 𝜏𝜏slow

Set 𝑛𝑛= 0, 𝜏𝜏 = 𝜏𝜏fast

Figure 2.5: Flowchart of the proposed learning algorithm.

2.2.1 Experimental setup

Our experimental setup consisted of the UR-10 robot equipped with an industrial-grade
GigE camera – Basler acA1300-60gm with a resolution of 1282x1226 and a maximum
frame-rate of 60 fps at full frame (we used 30 fps). As constant lighting conditions are
necessary for the image quality measure to be repeatable, we used an additional dedicated
LED light. The robot was controlled using a modified version of the UR modern driver
[71] available in ROS, which operates in soft real-time at 125 Hz, the maximum control
frequency for this robot. The desired position of the robot, obtained by integrating the
temporally-scaled CDMP, was updated in every control cycle. Our approach was tested on
two different workpieces: the curved workpiece as shown in Figure 2.6-left (here, referred
to as curved workpiece) and the workpiece with two-sides and a short curvature, shown
in Figure 2.6-right (here, referred to as two-sided workpiece). Black line on the surface
represents the generic feature that needs to be inspected while random text around it
represents a random background.

2.2. Experimental Evaluation and Results 25

Figure 2.6: Experimental setup with the curved workpiece (left) and the two-sided work-
piece (right).

Figure 2.7: The determined paths (yellow), starting points (white) and orientations in
CAD models. The curved workpiece is on the left and the two-sided workpiece on the
right.

2.2.2 Specification of trajectories

We applied the procedure from Section 2.1.2 to generate the inspection trajectories. The
first step in the trajectory generation process was to define the points making up the in-
spection path, extracting them from the CAD model together with the suitable orientations
to define view directions. CAD system PTC Creo [65] was employed for this purpose. In
the CAD system, the path designer projected a straight line onto the center of the surface
of the curved workpiece and selected the edge of the two-sided workpiece. This led to the
paths shown with yellow lines in Figure 2.7. Next, we created the coordinate systems for
all points on the desired paths using Eq. (2.5). Since in our experiments, the optical axis
of the in-hand camera was aligned with the z axis of the robot, at such orientations the
camera was directed towards the workpiece, with the optical axis parallel to the surface
normal. The points on each path were sampled so that the Euclidean distances between
consecutive points were constant (0.23 mm for the curved workpiece and 0.35 mm for the
two-sided workpiece), which resulted in a dense dataset of points. PTC Creo output the
sampled positions and orientations on the path as a STEP file. They were then lifted to
the desired distance from the two workpieces using Eq. (2.7). For each workpiece, we
obtained a sequence of positions and orientations {pppk, qqqk}Kk=0.

As shown in Figure 2.8, the resulting position and orientation paths are continuous. To

26 Chapter 2. Trajectory Optimization for Higher Productivity

0 0.1 0.2 0.3

0

0.1

0.2

0 0.1 0.2 0.3
-0.5

0

0.5

1

0 0.1 0.2 0.3

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3

-5

0

5

a) b)

c) d)

0 0.1 0.2 0.3
-0.2

-0.1

0

0.1

0.2

0 0.1 0.2 0.3

-0.5

0

0.5

1

0 0.1 0.2 0.3
-1

-0.5

0

0 0.1 0.2 0.3

-10

-5

0

e)

g)

f)

h)

Figure 2.8: Position and orientation paths extracted from the CAD model and their first
derivatives with respect to the weighted sum of arc and angle length r as specified in Eq.
(2.8). Plots a) b) c) d) show position, orientation, derivative of the position and derivative
of orientation with respect to the weighted sum of arc and angle path for the curved
workpiece respectively and plots e) f) g) h) show the same parameters for the two-sided
workpiece. Discontinuities in the first derivatives are marked with red dots and indicate
the breakpoints.

determine if it is necessary to segment the paths, we next computed the linear and angular
velocities with respect to the weighted sum of arc and angle length {rk}Kk=0, rk = sk+βξk,
with sk and ξk computed according to Eq. (2.8) and (2.9), respectively. The following
formulas were used: ppp′k = (pppk+1 − pppk)/(rk+1 − rk), ω̃ωωk = 2 log(qqqk+1 ∗ qqqk)/(rk+1 − rk), k =
0, . . . ,K − 1, pppK = pppK−1, ω̃ωωK = ω̃ωωK−1.

The graphs in Figure 2.8 show that the resulting paths are not continuously differen-
tiable. Thus to compute time parametrization, the two paths had to be segmented: into
five segments for the curved workpiece and into three segments for the two-sided work-
piece. The segmentation points (breakpoints) were determined by the path designer. The
method of describing the evolution of time along the inspection path was then used to

2.2. Experimental Evaluation and Results 27

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10
-0.5

0

0.5

1

0 2 4 6 8 10
-0.05

0

0.05

0 2 4 6 8 10
-1

-0.5

0

0.5

1

a) b)

c) d)

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25
-1

-0.5

0

0.5

1

0 5 10 15 20 25
-0.03

-0.02

-0.01

0

0 5 10 15 20 25
-0.8

-0.6

-0.4

-0.2

0

e) f)

g) h)

Figure 2.9: Position, orientation, velocity, angular velocity generated with CDMPs for the
curved workpiece are given in plots a), b), c), d) and for the two-sided workpiece in figures
e), f), g), h).

compute a suitable time parametrization, where the designer set Tj = 2 s, j = 1, . . . , 5, as
the duration for all path segments of the curved workpiece and T1 = T3 = 10 s and T2 = 5 s
as the duration of path segments for the two-sided workpiece.

Figure 2.10: Sequence of still images showing the robot moving along the surface of the
curved workpiece. Video of the experiments for this workpiece is attached.

28 Chapter 2. Trajectory Optimization for Higher Productivity

As both visual inspections paths are continuous, we were able to encode both of them
as one speed-scaled CDMP [48]. We used N = 25 weights to encode the desired trajectories
with CDMPs and M = 25 weights to encode the velocity profiles within CDMPs. The
resulting trajectories and their velocities are shown in Figure 2.9. As the duration of
the trajectory was set to Te,fast = 10 s for the curved workpiece and Te,fast = 25 s for
the two-sided workpiece, we set τ curvedfast = 10 and τ two−sided

fast = 25. The execution of
both trajectories at these speeds resulted in blurred images. The reference image quality
measures {yd(xp)}Pp=1 were then gathered by executing both CDMPs with τslow = 70.

2.2.3 Performance of speed optimization

Next, we applied the learning process to both visual inspection trajectories as presented
in Figure 2.5. We ran ILC for maximum of 20 iterations and stopped it when 95% of
the desired image quality measure was reached, i. e., γ = 0.95 in Eq. (2.31). After that,
we used the ILC-learned trajectory as the initial trajectory for RWPL, which was used to
further refine both trajectories. Figure 2.10 shows one iteration of learning performed on
the curved workpiece.

0.20.30.40.50.60.70.80.91
0

500

1000

0.20.30.40.50.60.70.80.91
0

0.05

0.20.30.40.50.60.70.80.91
0

0.5

1

0.20.30.40.50.60.70.80.91

20

40

60

0.20.30.40.50.60.70.80.91
0

0.1

0.2

0.20.30.40.50.60.70.80.91
0

0.2

0.4

0.20.30.40.50.60.70.80.91

40

60

0.20.30.40.50.60.70.80.91
200

300

400
a)

b)

c)

d)

Figure 2.11: Optimization results for the curved workpiece (left column) and the two-
sided workpiece (right column). The graphs in a) show the image quality measures y. The
next three lines of graphs show the linear and angular speed ∥ṗpp∥ and ∥ωωω∥, in rows b) and
c) respectively, and the corresponding speed profile ν in row d). The graphs show these
quantities for the initial motion (too fast), reference motion (too slow), and the motions
learned by ILC and RWPL.

The graphs in the left column of Figure 2.11 show the results of the optimization process
for the curved workpiece. To improve the quality of images, ILC adapted the speed scaling
factor so that the trajectory duration was modified from the initial 10 s (purple line), which
resulted in blurred images, to 25.7 s (blue line). RWPL further slowed down the motion to
32.3 s (yellow line). This way we got closer to the desired image quality measure yd obtained
with the reference, 70 s trajectory (red line). The right column of Figure 2.11 shows the
results of the same process for the two-sided workpiece. In this case, ILC learning started
at 25 s and adapted the speed scaling factor so that the image quality measure reached 95%

2.2. Experimental Evaluation and Results 29

of the desired measure, which resulted in 55.1 s long trajectory. Finally, RWPL changed
the duration of motion to 52.3 s.

a) Slow reference trajectory

b) Fast initial trajectory

c) Learned trajectory

Figure 2.12: Effect of motion speed on the captured images. Row a) shows the images for
the slow reference trajectory, where image quality is high but the motion is slower than
necessary. Row b) shows the images for the case of the initial trajectory, which is too
fast to obtain high-quality images. Row c) shows the images obtained while executing the
optimized trajectory after applying ILC and RWPL. Column-wise, the images were taken
at the same phase of the motion in all three instances. The current image quality measure
value is displayed in the upper-left corners of the images (values for the experiment shown
in the attached video).

With ILC we obtained 95% of the desired image quality measures in 63.3% less time
for the curved workpiece and 21.3% less time for the two-sided workpiece. With RWPL, we
achieved further improvements in 100 iterations, leading to 98.9% of the reference image
quality measure in 53.9% less time than the reference trajectory for the curved workpiece.
For the two-sided workpiece, RWPL reached 97.1% of the desired image quality measure
while also decreasing ILC time (from 55.1 s to 52.3 s), resulting in 25.3% overall time
reduction from the reference trajectory. Some of the images gathered while performing
visual inspection movements, with the initial speed and optimized speeds after learning,
are for qualitative comparison shown in Figure 2.12. The current image quality measure
value, displayed in the upper-left corner of each image, quantitatively confirms that the
image quality measure computed from images acquired with the hand-held camera while
the robot moves along the optimized trajectory is very close to the reference trajectory,
even though the optimized trajectory is much faster.

30 Chapter 2. Trajectory Optimization for Higher Productivity

2.2.4 Comparison to other methods

As stated previously, other methods than the combination of ILC and RWPL can be used
for the black-box optimization. We compared the proposed approach with CMA-ES, which
is considered state of the art in stochastic optimization [22], [53]. Unlike RWPL, it requires
several roll-outs to estimate the natural gradient.

0.20.30.40.50.60.70.80.91
0

500

1000

0.20.30.40.50.60.70.80.91
0

0.02

0.04

0.06

0.20.30.40.50.60.70.80.91
0

0.5

1

a)

b)

c)

Figure 2.13: Comparison between initial, reference, ILC, ILC and RWPL, ILC and CMA-
ES, only CMA-ES and only RWPL for a) image quality measures (y), b) linear speed ∥ṗpp∥
and c) angular speed ∥ωωω∥.

Figure 2.13 shows the image quality measure and speeds for different situations. Note
that the resulting image quality measure is qualitatively the same when the motion is
optimized by either the combination of ILC and RWPL, ILC and CMA-ES, or by only
CMA-ES and RWPL. The same reward function, defined by Eq. (2.39), was used by
all algorithms. Note that twice as many real-world executions were performed for CMA-
ES only and RWPL only (240, while ILC and RL performed 20+100 trials). However,
the results in Figure 2.14 show that the execution times achieved by combining ILC and
CMA-ES or by only CMA-ES or RWPL are considerably longer than the execution time
achieved by the proposed ILC and RWPL combination. While ILC only achieves a shorter
execution time, the computed image quality measure is worse because ILC cannot ensure
convergence to the desired image quality measure.

These results confirm that different methods can be applied to minimize the execution
time without degrading image quality, but the complexity of the methodology and the
final result might not always be the same. Either different rewards might be needed, or
more parameters might have to be set with different approaches. For example, for the
CMA-ES, we needed to determine the number of roll-outs before an update. In this case,
we used empirically determined 4 roll-outs. A higher number would result in a linearly
higher number of repetitions, but not a linearly better result.

2.3. Discussion 31

a)

b)

Figure 2.14: Comparison between initial, reference, ILC, ILC and RWPL, ILC and CMA-
ES, only CMA-ES and only RWPL for a) execution times and b) average image quality.

2.3 Discussion

One question that arises is if we could calculate the desired speed without applying the
presented optimization process, or any other optimization method. Let us assume that the
camera is perpendicular to the surface of the workpiece and that it moves in x direction.
The following expression can then be derived to relate camera speed to image motion [72]

ṗx =
dfκux
tef

. (2.40)

Here, df is the distance of the camera from the workpiece, f is the focal length of the
lens, te is the camera exposure time, ux is the pixel size, and κux is the image motion that
occurs while the iris is open. In our experimental setup, we had df = 0.366m, te = 0.0115 s,
f = 25mm, ux = 5.61µm, thus to keep the motion blur below 1 pixel, i. e. κ = 1, the
camera speed should be equal to

|ṗx| =
0.366m · 1 · 5.61 · 10−6m

11500 · 10−6 s · 25 · 10−3m
= 0.0071m/s (2.41)

or less. Figure 2.11 shows that for slow motion, which was used to collect yd(sj) (νslow =
70), the maximum linear speed on different segments was between 0.007m/s and 0.009m/s.

32 Chapter 2. Trajectory Optimization for Higher Productivity

This is close to the computed maximum speed of 0.0071m/s, which guarantees that image
blur is below 1 pixel. Thus, the initial, empirically determined speed was appropriate and
did not introduce significant motion blur.

It would be possible to optimize the speed of motion by specifying a nonlinear con-
strained optimization problem, where one of the constraints would be the maximum allowed
speed. In this case, the optimization could be performed off-line and compute the fastest
motion trajectory that does not exceed the maximum allowed speed. However, there are
many disadvantages of such an approach. Firstly, it assumes that the camera parameters
are known with high accuracy, which requires an accurate calibration process, which is
otherwise often not needed for quality inspection. Even small calibration errors can in-
troduce a substantial error in the computed maximum speed. Secondly, such an approach
cannot take into account other factors that affect image quality, e. g. camera vibrations in-
troduced by robot motion, errors in the specified workpiece-to-camera distance that might
arise during motion, lighting conditions, robot dynamics and other sources of noise. On
the other hand, the proposed approach encompasses all of these aspects in learning and
thus greatly simplifies the complete trajectory specification process. Since it optimizes an
objective measure for image quality, it considers all aspects that affect image quality and
does not require the user to set an arbitrary parameter to limit motion blur. While motion
blur is obviously an important factor to determine image quality, it is not the only one.

The above-mentioned factors are also detrimental when generalizing between objects by
utilizing the learned speed profile in one setting for another object/setting. While this kind
of generalization could theoretically provide an initial policy for learning provided there
are the same lighting conditions, robot, and camera in the workcell, this could prove more
problematic and costly than just learning again from scratch. Different object geometries
namely often require different speed profiles.

The optimization problem (2.24) is highly nonlinear, therefore we cannot theoretically
prove that the proposed method will find a global optimum. The proposed approach is
based on policy search methods that only consider the current policy and its neighborhood
in order to gradually improve the performance. This might result in a local optima [38].
However, because the selected image quality measure monotonically strictly decreases with
the increased velocity, the proposed algorithm is able to approach the locally optimal solu-
tion. Moreover, we have shown in our experiments that the proposed method significantly
reduces the time of execution while maintaining the initial image quality measure.

Our experiments made clear that even with fairly benign workpieces like the ones shown
in Figure 2.7, which involve a combination of flat and curved surfaces, discontinuities in
first derivatives can arise. The only way to accurately follow such trajectories with a
real robot is to reduce the velocities to zero at breakpoints. Our approach to trajectory
specification is mathematically rigorous and ensures that velocities are set to zero where
needed so that the robot can instantaneously change the direction of motion at breakpoints.
This way we compute physically feasible trajectories. Otherwise, inaccuracies in tracking
would inevitably occur, which is inappropriate for visual quality inspection tasks. Another
benefit of the proposed approach is that the speed is adapted by multiplying the initial
velocities by a scaling factor, which is learned on-line. The learning procedure is therefore
guaranteed to preserve the zero speed at breakpoints, thus ensuring that the optimized
trajectories are also feasible.

Our approach is to keep the user in the loop where she or he is needed, i. e. when
specifying the course of motion along the workpiece surface. To specify an appropriate
path, the user must understand the desired visual inspection task in order to specify a path
on the surface of the workpiece’s CAD model and determine the breakpoints to segment
the paths into twice continuously differentiable parts. All other parts of the proposed

2.3. Discussion 33

approach are fully automated and rely on an objective measure of image quality that does
not require the user to subjectively assess the quality of images. In addition, the proposed
methodology does not require any knowledge about camera parameters.

A considerable factor in manufacturing is the amount of personnel time required to
setup a new production cell. In our experience, it usually takes a long time to manually
fine-tune the speed of motion. In contrast to this, in the proposed approach, the user
simply starts the learning process and comes back when it is finished. Thus, the personnel
costs can be reduced since the user has time to perform other tasks while the optimization
process is running.

In this chapter, we developed a new methodology for optimization of velocity for the
robot trajectories. Although optimization itself is the main topic, our approach required
also complicated parametrization of the initial robot trajectory, where we needed to extract
the path from the CAD model of an object and to calculate the time parametrization. In
order for systems in the factories of the future to be able to do this process autonomously,
we need to go to the lower levels of our pyramid (Figure 1.4) that are able to generate and
adapt motions of the robots.

35

Chapter 3

Adaptive Process Behaviour

In the preceding chapter, we presented an instance of optimizing a pre-existing trajectory.
Nonetheless, there are other means to accelerate the entire process. Thus, in this chapter,
we present an operational example of process adaptation. In this case, we know what
is an overall goal of our task, we have a certain knowledge about it, and we want to
make it faster. This task is considered more intricate (located lower in the pyramid -
Figure 3.1) due to the absence of prior information on the parameters used to optimize the
task and the trajectories for its accomplishment. To make decisions regarding the system
behaviour, given the multitude of parameters involved, we advocate for the adoption of an
NN classification technique. To tackle the issue of trajectory generation, we propose using
motion planners. Although there are numerous motion planners already in use, we provide
a brief overview of the basic ones, without delving into their implementation details. The
implementation details are presented in [58], and we outline a methodology for selecting
the most appropriate one for the specific task.

Process
Adaptation

C K

Figure 3.1: Trajectory adaptation is set to be in the middle of our classification pyramid
since it is occasionally used in industrial processes but still not completely generative
behaviour approach.

We demonstrate the advantages of our approach on the example of industrial line
that produces parts for automotive industry through injection moulding. These parts

36 Chapter 3. Adaptive Process Behaviour

have several possible defects that are the most common to appear. Vision techniques for
checking the products already exist [73], [74], but the problem for our case is that there are
too many possible defects, and checking all of them with a robot would create a bottleneck
in the production lines. Our approach enables the elimination of improbable defects and
rapid generation of the trajectories for the transition between inspection points of the
probable defects.

This study concentrates primarily on two topics: evaluating motion planners and iden-
tifying the part of the product that requires inspection based on the process parameters.
To determine the required viewpoints for inspecting the product, we utilize an NN that
takes the process parameters as inputs and produces the potential defects as outputs (C in
Figure 3.1). Since the environment is always stationary and known, we have some knowl-
edge about the task (K in Figure 3.1). This includes a model of a cell and a robot (we know
where are the obstacles) and the desired positions of the camera in relation to the object for
each of the possible defects. With this knowledge, we employ motion planners to navigate
an in-hand camera around the static object and position it appropriately, ensuring that
there are no obstructions in the line of sight [17]. Motion planners are a suitable solution
for this task since they can generate movements using only start and goal configurations,
rather than a complete specification of intermediate states [75].

3.1 Methodology

Our method relies on the capability of NN to extract dependency of possible defects in
products and the process parameters and capability of motion planners to generate fast
trajectories in confined spaces in real-time. Different motion planners exist, based on
different approaches and with different results of the application [19]. For the completeness
of the thesis, we introduce the most generic ones in Section 3.1.1. We continue with Section
3.1.2 where we show how we can experimentally determine the correct motion planner for
the given use-case through an in-depth statistical analysis of a set of readily available
motion planners and tools [59]. In order to determine which discrete point needs to be
checked (where the error is most likely to occur), we need to follow the process parameters.
In Section 3.1.3, we introduce high-level decision-making technique that is based on NNs
that follow the aforementioned parameters and output the label of the viewpoint that needs
to be inspected (C in Figure 3.1).

3.1.1 Planners

The task of path-planner is to “find a collision-free motion between an initial (start) and a
final configuration (goal) within a specified environment” [21] as shown in Figure 3.2.

Path Planner
• Geometry of

environment
• Geometry and

kinematics of robot
• Initial and goal point

Collision-free
path

Figure 3.2: Path planner inputs and outputs.

Characterization of a motion planning problem can be done according to the task it
addresses, properties of the robot and properties of the algorithm [75].

3.1. Methodology 37

By the task it solves, motion planning can be divided into four categories: navigation,
coverage, localization and mapping. Navigation refers to finding a path that connects
initial and goal position. Coverage is planning of the movement that will cover a certain
amount of points in space. Localization is the problem of using a map to interpret sensor
data to determine configuration of the robot, while mapping is exploring of environment
in order to construct a representation useful for all other tasks.

Motion planning heavily depends on DoF of the task space and configuration space of
the robot. When configuration space is defined, we have to be aware of constraints (joint
limits) of the robot and if the robot is modelled using kinematic or dynamic equations in
order to know if the output of the planner needs to be torques (forces) or angles (offsets)
of joints.

Properties related to the algorithms refer to optimality of the motion, computational
complexity, completeness and finding solutions online or offline. Motion can be optimal
in terms of time, energy, or path length. With changing the size of a problem description
(number of DoFs, number of obstacles), memory requirements and running time conse-
quently change. These changes refer to the complexity of the algorithm. Planners can
be complete (solution is found if it exists, otherwise failure is indicated), but for the high
dimensionality of the problem (usually number of DoFs), these algorithms become com-
putationally too expensive. That is why weaker forms of completeness are introduced:
resolution completeness (if solution exists on the given level of discretization, it will be
found) and probabilistic completeness (probability of finding solution converges to 1 as the
time goes to infinity). Division of online/offline algorithms tells us if the solution is found
based on model and then sent for execution (offline) or it is generated while executing
(online).

The robot path planning problem in literature is usually divided into classical methods
and heuristic methods, as shown in Figure 3.3.

Cell
decomposition

Path planning algorithms

Classical algorithms Heuristic-based algorithms

Potential
field

Sampling
-based

methods

Sub goal
network

ANN Fuzzy Nature
inspired

algorithms

Hybrid
algorithms

Figure 3.3: Path planner division introduced in [19].

In the following subsections we give a brief explanation of all the methods as well as
benefits and drawbacks of using them. For graphs and details about implementation, see
[76].

Classical Algorithms

Classical algorithms are very popular in solving robot motion planning tasks because it
is observed that either a result would be obtained, or it would be confirmed that a result
does not exist [77]. The major drawback of this approach is high computational cost and
failure to respond to the uncertainties of the environment, so it is less preferred for real-
time implementation. This is why for motions in dynamic environments, where objects are
not stationary, heuristic methods based on artificial intelligence (AI) are becoming more

38 Chapter 3. Adaptive Process Behaviour

popular. In the following subsections, we briefly review several classical approaches: Cell
Decomposition (CD), Potential Field, sampling based methods (Probabilistic Road-Map
and Rapidly-Exploring Random Trees) and Subgoal Networks.

In the Cell Decomposition (CD) method, robot’s workspace is divided in regions called
cells (Figure 3.4-left). Based on this division, adjacency graph is formed (Figure 3.4-
right). In this graph, each node corresponds to one cell and edges correspond to the
connection between adjacent cells. Path planner first determines cells with start and goal
point and then searches for a path on the graph. Mainly used algorithms for this purpose
are Dijkstra’s, A-star and Sample algorithm.

Figure 3.4: Workspace divided to cells (left) and corresponding graph (right) [78].

The basic concept of Potential Field method is to fill the robot’s workspace with a
potential field, in which the robot is attracted towards the target and repulsed from the
obstacles. At each point, the robot heads in the direction that is negative of the gradient
of potential field. Figure 3.5 shows an example of robot navigating through potential field
from starting (red dot) to goal position (green dot) [79]. Obstacles, presented with the
black areas, generate repulsive force and goal position generates attractive force. Resulting
vectors are presented with arrows.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 37, No 1, pp 316-328

325

5.2 The Second Environment

Figure (8) represent the normal path of Artificial Potential Field but figure (9) is the smoothed path by spline

method, this environment include seven static obstacles, the start point at (-6,6) and goal point is (6,-6), the

dimension is 7 by 7

Figure 8

Figure 9

Figure 3.5: Robot navigating through potential field from starting (red dot) to goal posi-
tion (green dot). Obstacles, presented with black areas, generate repulsive force and goal
position generates attractive force. Resulting vectors are presented with arrows. Reprinted
from [79], used under Creative Commons CC-BY license.

Sampling-based methods for planning (SBP) have been widely used recently because
of their capability to solve time-critical real-world planning problems. They are unique
by the fact that planning is done in the configuration space of the robot. SBP is trying
to capture the connectivity between randomly sampled points. The most commonly used

3.1. Methodology 39

algorithms of this subgroup are Probabilistic Road-Map (PRM) [80] and Rapidly-Exploring
Random Trees (RRT) [81]. Both algorithms are based on the same idea of connecting
randomly sampled points, but different in the manner they construct a graph connecting
the points [82]. The main advantage of these two methods is that they are capable of
finding fast solutions for difficult problems, and the disadvantage is that they have a
weaker notion of completeness (probabilistic completeness) and that solutions are widely
regarded as suboptimal. Probabilistic Road-map (PRM) algorithm consists of two stages:
Graph building stage and planning stage. In the graph building stage, random points are
sampled in the configuration space. Points that are in collision are rejected (Figure 3.6-
left). The algorithm tries to connect all pairs of the vertices with edges (curves or straight
lines) (Figure 3.6-center). In the planning stage, the graph developed in the previous stage
is used and the shortest path is found (Figure 3.6-right). Any graph searching algorithm
can be used in this stage (A-star, Dijkstra’s).

Figure 3.6: PRM steps: 1. Sampling random points (left), 2. Searching for possible
connection between points (middle), 3. Finding the shortest path from the upper left
corner to the bottom right corner [76].

Rapidly-exploring Random Trees (RRT) algorithm grows the tree so that each node
of the tree is a state in the workspace (Figure 3.7). The algorithm starts at the initial
position of the robot. Before a new state is added to the tree, a random point is generated
in the workspace. The algorithm then checks if there is a connection between the closest
node in the tree and this random point. If there is a connection, the tree is expanded
towards the random point by a small step. If there is no connection, a new random point
is generated. This is repeated until goal state is reached. In RRT, step size is the only
parameter. Smaller values of this parameter result in slow expansion, but finer paths. The
expansion of the tree can be biased towards the goal by choosing the goal state as the
random state with the certain probability.

Figure 3.7: RRT tree building (left) and final path (right) [76].

40 Chapter 3. Adaptive Process Behaviour

The subgoal network builds the list of reachable configurations from the initial config-
uration instead of building the representation of obstacles. The connection between two
configurations is decided by a local operator motion planning algorithm. This algorithm
connects two configurations using a straight line. First, candidate sequence of subgoals is
formed. If it does not reach the goal, reachable subgoals are stored, and it tries to find the
sequence of configurations between the goal and any of the subgoals. The main advantage
of this approach is that it has small memory requirements.

Heuristic Algorithms

Classical approaches have been dominant in robotics for years, but recently heuristic al-
gorithms are becoming more and more popular. The main reason for this is that classical
approaches do not produce optimal paths and tend to be locked in some local minima.
Moreover, some of them may not provide the suitable solution in the presence of multiple
obstacles or in dynamic environments [19]. In the following subsections, some of the most
widely used heuristic approaches are presented.

Expansion of NNs and their properties such as nonlinear mapping, good generaliza-
tion performance and ability to learn from examples have led to them being employed in
navigation task for modelling complex relationships between inputs and outputs. Robot
navigation problems solved by neural networks can be categorized in interpreting the sen-
sory data, obstacle avoidance and path planning [83]. Sensors are necessary for a robot
to determine its position in space. They can be roughly divided in two classes: internal
(accelerometers, gyroscope, encoders) and external (lasers, infrared sensors, sonar, visual
sensors). Internal sensors are prone to accumulating error and external can have a lot of
noise. Since neural networks have many processing nodes, they are able to provide ro-
bustness and fault tolerance for interpretation of sensor data. Feedforward networks and
Principal Component Analysis (PCA) are heavily used in correcting the data from sensors
[84], translating readings from sensors into occupancy values of each grid cell for building
metric maps, combining information from two different types of sensors [85], compress-
ing dimension of sensor data or extracting important features [86]. Neural networks for
obstacle avoidance are taking the data from the environment as inputs and they output
the direction in which the robot should move. Mainly used networks for this purpose are
multilayer-perceptron and (MLP) [87] and recurrent neural networks (RNN) [88]. These
networks are often combined with networks used for interpretation of sensory data [89].
Classical methods suffer from the problem of being exponentially more demanding as the
dimensionality of the problem increases. On the other hand, if all the executable paths
in some environment would be stored, it would require an enormous amount of memory.
Neural network path planning solutions are based on examples provided by human partic-
ipants [90] leading the robot in known environment from randomly chosen start and goal
position or by randomly generated feasible paths by some of the classical algorithms [91].
For all the networks, input data should consider robot’s current and previous state, goal
position and sensory data so it is able to output commands for changing the state. The
main drawback of neural network approach is that results cannot be explicitly explained
and that learning is time consuming. The benefit of this approach is that once the network
is trained, the time of execution is not dependent on the size of the problem anymore
and that is why it does not have a trade-off between speed and optimality as classical
approaches.

The term fuzzy refers to things that are not clear. It offers flexibility in reasoning when
considering uncertainties in any situation. Path planning using fuzzy logic is considered
reactive planning because the path is planned only for immediate move without caring
about the future. In order to design path planner that uses fuzzy logic, we need to formulate

3.1. Methodology 41

inputs and to create design rules (form of weighted IF-THEN) that will provide one of
the formulated outputs to be active. In the example shown in Figure 3.8, inputs to the
planner are distances from the obstacle in front, front left diagonal, front right diagonal,
angle between the heading direction of the robot and the goal, distance from the goal and
preferred turn. Based on these six inputs, the robot decides whether to turn clockwise or
anti-clockwise. This way, logic is written so that the robot avoids obstacles and aligns itself
towards the goal. The major drawback of this approach is that it requires a lot of tuning
of the rules, and it requires all the possible rules to be considered by the programmer.

Figure 3.8: Finding path from the upper left to the bottom right corner with fuzzy logic
[76].

Nature-inspired algorithms which are robot navigation techniques that are inspired by
biology behaviours have gotten much attention recently. The ones that demonstrated the
best performances are: Genetic Algorithms (GA), Particle Swarm Optimization (PSO)
and Ant Colony Optimization (ACO).

A genetic algorithm (GA) is a search heuristic inspired by Charles Darwin’s theory of
natural evolution. This algorithm simulates natural selection so that the fittest individuals
are selected for reproduction to produce offspring for the new generation. In genetic algo-
rithm, five phases are considered: 1. Initial population, 2. Fitness function, 3. Selection,
4. Crossover, and 5. Mutation. In the first step, the population is chosen randomly. For
the case of path finding, the population contains all the paths that are feasible for the ex-
ecution. These paths are usually found by connecting start and goal position using greedy
approach based on Euclidean distance heuristic. Each member of the population is defined
as a chromosome, and each chromosome is defined by the set of genes. In the use-case of
path planning, this means that each feasible trajectory is one chromosome. This means
that the number of break points (turns) in the trajectory is a parameter that is given by the
programmer. Genes (encoded in binary notation) represent coordinates of the path points.
This means that these points coordinates are our optimization variables. As the objective
(fitness) function, the length of the path is used in order to optimize the path. This refers
to the second and third phase, where only the best chromosomes are chosen. The crossover
is done between the selected ones. It means that the algorithm takes some genes from the
best chromosomes and creates the new offsprings (paths). With certain probability and in
order to maintain diversity within population and premature convergence, mutation phase
is executed over some of the offsprings. This means that some genes in the chromosomes
obtained by offspring can be flipped. The algorithm terminates when the population has
converged (there is no significant difference between successive generations). In Figure
3.9-left, average fitness value, distance between individuals within generation and the path
length through 10 generations are given. The path found by the algorithm is given in

42 Chapter 3. Adaptive Process Behaviour

Figure 3.9-right. The number of break points used was 2, meaning that each chromosome
had a number of genes that corresponds to representing coordinates of 2 points in binary
notation.

15 105
Best: 707.5 Mean: 232201

10

5

0

0.8

0.6

0 1 2 3 4 5 6 7 8 9 10

Generation

0.4

0.2
1 2 3 4 5 6 7 8 9 10

Generation
6 106

Best, Worst, and Mean Scores
4

2

0
1 2 3 4 5 6 7 8 9 10 11

Generation

Average Distance Between Individuals

Best fitness
Mean fitness

A
ve

ra
ge

 D
is

ta
nc

e
Fi

tn
es

s v
al

ue

Figure 3.9: GA fitness, distance within the population and path length through iterations
(left) and solution of the path from the upper left to the bottom right corner (right) [76].

PSO is mainly inspired by social behaviour patterns of organisms that live and inter-
act within large groups. It incorporates swarming behaviours observed in flocks of birds,
schools of fish or swarms of bees [92]. It is a stochastic global optimization method based
on population that is especially useful for parameter optimization in continuous multi-
dimensional search spaces. Similar as in GA, PSO creates a random population (in our
case feasible paths) and uses objective function (path length measurement) to evaluate par-
ticles. However, mutation and crossover operations disappear. Instead of these operations,
particles update themselves with the internal velocity based on particles’ self-experiences
with their social experiences [19]. It takes real numbers as particles, so it does not require
binary encoding as GA. All the trajectories are described with the same number of points
(this represents dimensionality of the problem and in our case as shown in Figure 3.10 it is
equal to the number of break points shown with red dots). Each member of the population
(each feasible trajectory) is informed about the global best result and remembers its own
best result.

-2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 3.10: PSO in 5th, 25th and 50th iteration [93].

The process of updating continues for a predefined number of iterations or until a termina-
tion criterion is met. PSO in trajectory planning aims to find the optimal or near-optimal
trajectory by iteratively updating the particle positions and velocities. For the detailed in-

3.1. Methodology 43

formation about the update, see [19]. Although they demonstrate effective convergence as
compared with traditional algorithms, PSO approaches are not reliable in real-time robot
applications and they require the number of break points (dimensionality of the problem)
to be defined in advance.

Ant Colony Optimization (ACO) [94] is a population-based search technique for the
solution of combinatorial optimisation problems, inspired by the fact that ants tend to
find the shortest path between their nest and food using pheromone trails instead of vision
(they are almost blind). Pheromone trails send signal to other ants. If an ant decides, with
some probability, to follow the trail, it will also lay more pheromone and reinforce the trail.
The more ants follow the trail, the stronger the pheromone becomes, and it is more likely
that other ants will follow it. Pheromone decays over time, and that is the reason why it
builds faster on shorter paths. For path finding applications, the free configuration space
is filled with randomly placed points representing nodes in a connection graph. Each node
is connected to other nodes through edges. The cost (length) and amount of pheromone
for each edge are defined and stored in a matrix. When an ant takes an edge connecting
two nodes, it leaves an amount of pheromone on that edge. The amount of pheromone
left is inversely proportional to the distance (cost) of the edge. This update rule helps
consider the vaporization of pheromone between updates. The probability that an edge
will be included in an ant’s path is calculated based on the amount of pheromone and a
heuristic value. This probability is then used in the Roulette Wheel Selection method [95],
a technique for choosing edges based on their probabilities. The main shortcoming of ACO
is that it needs a long time to reach optimal value if the size of the problem is large.

Although neural networks have some properties that are beneficial for path planning,
knowledge representation and extraction are difficult. On the other hand, fuzzy logic
is able to handle imprecise and uncertain information but has a drawback because it
lacks systematic methodology for their design. Combination of neural networks and fuzzy
reasoning refers to hybrid (neuro-fuzzy) systems. In these systems, fuzzy logic can be
trained by learning algorithm from neural network theory [96], or fuzzy logic is encoded
with neural network [97] or fuzzy logic rules are extracted by neural network [98].

In our specific case, the industrial environment remains constant, and there is no re-
quirement for real-time decision-making or unpredictable obstacle avoidance techniques.
Our primary focus is to calculate trajectories within a reasonably short time frame while
ensuring that they are executable. Given these considerations, classical sampling-based
approaches that search for paths directly in the robot’s configuration space are the most
suitable planners for our use case. In the following sections, we present an evaluation of
multiple variations of sampling-based methods. We assess their performance and propose
a methodology for selecting the most suitable planner based on our specific requirements.

3.1.2 Evaluation of motion planners

In recent years, considerable progress was made in making fast and robust algorithms for
autonomous robot motion planners [99] with their goal to enable robots to automatically
compute their motions from descriptors of tasks and models acquired from sensors [75].
Therefore, many planning algorithms are readily available in different software packages,
for example in MoveIt! [100]. Planning libraries, such as the Open Motion planning li-
brary (OMPL) [58], provide geometric and control-based planners. Other options exist,
for example the Stochastic Trajectory Optimization for Motion Planning (STOMP) [101],
Gradient Optimization Techniques for Efficient Motion Planning like Covariant Hamilto-
nian Optimization for Motion Planning (CHOMP) [102], or Search-based planning library
(SBPL) [103].

44 Chapter 3. Adaptive Process Behaviour

Since Robotic Operating System (ROS) [104] has gained a lot of popularity in modern
robotics and has a potential to become one of the most widely used frameworks, we used
only the tools that are compatible with it. This includes MoveIt! [100], RViz for visualiza-
tion, and Planner arena [59] for benchmarking of different planners. We tested different
motion planners available within the Open Motion planning library (OMPL) [58], which
offers also constrained planning [105]. The goal of the evaluation was to find planners
which can generate collision-free motion trajectories in a fast and reliable manner.

As mentioned previously, the presented example deals with visual quality inspection,
where a robot guides the camera to a set of pre-defined postures. The postures are deter-
mined so that the camera can see certain aspects of a product/workpiece. Because there
are too many postures to reach them in the allocated time, the robot guides the camera to
only a small, random sub-set of the given postures. Thus, for every production cycle, we
need to generate trajectories between the selected postures. If there are k postures, there
are

s = k × (k − 1) (3.1)

trajectories between them – every posture is connected with every other. One could argue
that the connection between postures (k, k − 1) is the same as between (k − 1, k), and
there are actually only half as many. This is spatially true, but not temporally, and the
motion needs to be recomputed. This can be avoided if we consider that the sequences
can only be increasing, i.e., one can only go from posture 4 to postures 5 and more, and
not to postures with a lower number. However, this makes it less general and has other
implications, for example, if we actually wanted motion (k − 1, k).

In order to determine which planner might be most suitable for the given use-case,
we needed to check various parameters. The first criteria was to check if all the planners
are able to reach the desired pose. The second criteria was to measure how much time
the planner requires to generate the solution. The third criteria we checked was the path
smoothness S as introduced in [106]. It is obtained by averaging the squared angles between
the consecutive trajectory segments

S =
1

n

n−1∑
i=2

δ2i . (3.2)

To compute the angles, we again have a sequence of n points d1,d2, . . . ,dn ∈ R3 on the
path, distributed from the beginning to the end of the path. The angle δi between each
triple of consecutive points {di−1, di, di+1} was calculated using

δi = arccos

(
(di−1 − di)

⊤(di+1 − di)

∥di−1 − di∥ · ∥di+1 − di∥

)
. (3.3)

The forth criteria was the length L of the calculated trajectory. The length of motion given
as the sum of n angles traveled by all robot joints between the initial q0 and final robot
configuration qn

L =

n∑
i=1

∥qi − qi−1∥. (3.4)

3.1.3 High level decision making for planning

Machine learning methods have been proposed in different manners for quality prediction.
In [107], the authors show that four examined machine learning (ML) algorithms ade-
quately predict quality in injection molding even with very little training data. Pressure

3.1. Methodology 45

data from the mold cavity was used. Similar was done in [108], where tree-based algo-
rithms, regression based algorithms, and autoencoder were compared. Using a plethora of
collected data, the paper shows that autoencoder outperforms other examined tree-based
machine learning algorithms in accuracy, precision, recall, and F1-score. Neural networks
(NN) were compared to decision trees in [109] for prediction of parts quality in thermoplas-
tics injection molding, showing over 99% accuracy rates. On the other hand, [110] shows
that only a combination of NN and support vector machines (SVM) allowed them to reach
accuracy above 99%. That work was extended to identify relevant parameters [111]. Since
many injection moulding machines are not prepared to access their data on a real-time
basis, digitalization of such devices was explored in [112].

In our method, we use the production parameters to train a deep autoencoder (AE). We
project the production parameters of a part into a 3-dimensional latent space of a deep AE.
There, the known faulty parts are clustered using Gaussian Mixture Model (GMM) with
respect to the type of the defect. Each defect type is associated with a camera viewpoint
from where its occurrence can be inspected. To determine the most likely defect type of
the current part, we check the posterior probability of its latent space projection belonging
to the components in the trained GMM. This probability is then used to determine the
sequence of the viewpoints where the robot guides the camera to check for the defect, as
presented in Algorithm 3.1. Note that only potential defects where the posterior probability
is non-zero are checked. Thus, time is saved with less checks and with a higher probability
of immediately checking for the most probable defect.

The proposed defect prediction approach is based on the assumption that similar pro-
duction parameters will produce a similar output. Therefore, we use the production pa-
rameters from previously produced parts and use them to predict the outcome of the
production process for each new produced part. Another assumption is that there is a
subset of most common defects, which cover the large majority of all cases.

Hereinafter, we explain in more detail the database of production parameters, the
training of the AE and the clustering on the injection-moulding industrial example from a
car-parts manufacturer.

Algorithm 3.1: Procedure for inspecting the viewpoints of one product based
on the process parameters

procedure Check viewpoints
project new part parameters (Tab. 3.1) into the latent space θAE

of a previously trained AE;
compute posterior probabilities P of the established c

GMM clusters associated to c most common defects;
arrange P in descending order;
set i = 1
for probabilities p ∈ P:

choose viewpoint(s) Vi corresponding to pi;
plan trajectory between current robot posture

and Vi;
execute trajectory and set i = i+ 1;
if vision check (Fig. 3.22) returns error:

discard product;
break

end

46 Chapter 3. Adaptive Process Behaviour

Database

We had at our disposal a database that consisted of production parameter data for 4436
good (OK) parts and 45 parameter data for faulty (NOK) parts. We also had 32 faulty
physical parts with associated parameters available. We refer to this database as DB1.

The main reason for many more entries for good parts is that a typical industrial
production process produces significantly more good than bad parts. In addition, in many
production lines including the one studied in this paper, intermediate quality checks are
performed. Since the parts that reach the end of the production line have already passed
these checks, the number of bad parts is reduced. Those that are deemed faulty at the
intermediate checks are discarded and their production data might not be stored or is
incomplete. In any case, the data about faulty parts identified at the end of the production
line can initially only be collected by assigning a human worker to manually inspect the
parts. Thus in general, data for faulty parts is difficult to obtain.

To obtain the production parameters for each part, their QR code identifier is scanned
and the data extracted from the production line database. In our practical example, the
discrepancy between the number of faulty physical parts and the number of data for faulty
parts in database DB1 is due to some parts having the (small) QR code identifier not
readable.

During the production process, hundreds of production parameters are stored for every
product. However, a large portion are not relevant for the process itself (server name, user
name, folder, etc.). In collaboration with a production engineer from the manufacturer,
we identified 22 relevant production parameters. They are listed in Table 3.1. Some are
easily understood, while the others, such as PD_DIA average and minimal values, were
proposed by the engineer.

Table 3.1: Injection Moulding Parameters Used for Prediction of Defects.

cycle time switch after volume
injection time machine cycle counter

max injection pressure feeder housing temperature
switch after pressure tool 1 heating circuit

dozing time tool 2 heating circuit
material cushion tool 4 heating circuit

tool 7 heating circuit blasting nest
tool 10 heating circuit nest insertion
tool 11 heating circuit nest withdraw

cooling nest PD_DIA_min. value
marking nest PD_DIA_avg. value

Defect Probability Prediction Using a Deep Autoencoder

As presented in Algorithm 3.1, we pass the data of DB1 through a deep autoencoder. The
data was normalized for each parameter. The autoencoder was designed empirically, with
a 22-dimensional input and output layers and 5 hidden layers of the size 15, 10, 3, 10, 15,
respectively. The hyperbolic tangent sigmoid activation function was used for the neurons.
The autoencoder passes its input data to the output, so that the output data matches the
input data with the highest possible precision. The data is pushed through differently sized
layers, including through the lowest-dimensional layer, known as the latent space. The data
in the latent space now encodes the data with the smallest amount of parameters. From

3.2. Experimental Evaluation and Results 47

the manufacturer we know that there are 5 typical errors that can occur. These include
porous material, faulty/broken sides, incomplete bottom edge, fault/broken pins and faulty
windings as a result of the injection moulding process. The defects are depicted in Figure
3.11. We therefore partitioned the data into c = 5 clusters. In order to exclude the effect
of the clustering method on the clustering result, we tested two clustering methods. These
were k-means and Gaussian Mixture Model (GMM) clustering, with 5 target clusters for
each. The former, which is the most commonly used clustering method, forms spheres
around the centers of the clusters and performs hard classification, while the latter can
handle non-round shapes of clusters and perform soft classification [113].

Figure 3.11: Five typical defects: e1) porous material, e5) faulty/broken sides, e2) in-
complete bottom edge, e3) faulty/broken pins and e4) faulty windings as a result of the
injection moulding process.

3.2 Experimental Evaluation and Results

In this section, we first present our experimental setup. We proceed with the results of
benchmarking the motion planners. In order to know from which point the object needs
to be inspected, we need a defect prediction method. Thus, we finally show the results of
defect prediction introduced in Sec. 3.1.3.

3.2.1 Experimental setup

The experimental setup consists of the work-cell where finished products arrive for inspec-
tion after injection moulding. UR 10 robot is holding industrial camera and moves it to the
inspection points from which the object is inspected for the defects. Experimental setup
is shown on the left side of Figure 3.12 and corresponding RViz simulation is on the right
side.

48 Chapter 3. Adaptive Process Behaviour

Figure 3.12: Physical implementation of the visual quality inspection cell for the use-case
(left), and RViz visualization (right).

3.2.2 Motion planner evaluation

In our motion planner method evaluation, we evaluated all of the 21 different motion
planners available within the Open Motion Planning Library (OMPL) [58]. The planners
are listed in Table 3.2. We have considered the example with 11 postures. Some of
the postures are presented in Figure 3.13. Because the product is relatively small, some
postures are quite close together and those are not presented. The potential defects were

Figure 3.13: Seven out of eleven postures for visual quality inspection from the given use-
case in RViz visualization and in real-world execution.

associated with predefined viewpoints which were set so that they ensure the camera-object
relation such that the images are sharp. Note that some viewpoints have to provide a look
at the product from the side and some from the top. In our implementation, a look from
the side of the object included two postures, one for the sides and windings and one for
the bottom of the product. An external actuated axis was installed into the fixture of the
product to ensure that the object can rotate. Thus only one robot posture was required.
The rotations of the object were not considered in the evaluation of motion planning, only

3.2. Experimental Evaluation and Results 49

the robot motion was considered. Having 11 postures means that, according to Eq. (3.1),
one would have to pre-compute and store 110 different motions. This is manageable, but
again reduces the generality of the approach and quickly becomes unsustainable with a
larger number of postures. In our experiments, we measured four main criteria for the
evaluation (ability to reach poses, time required for planning, trajectory smoothness and
length of the trajectory). Robot needed to go through all 11 given poses for all the planners.
In order to achieve the completeness of the results, experiments were repeated 250 times.

Table 3.2: List of tested OMPL planning algorithms.

Pl. # Planner name
1 BiEST (Bidirectional version of EST)
2 ProjEST (Projection-based version of EST)
3 LazyPRM
4 LazyPRM*
5 SPARS (SPArse Roadmap Spanner algorithm)
6 SPARS2
7 SBL (Single-query, Bi-directional and Lazy Collision Checking)

8 EST (Expansive Space Trees)
9 LBKPIECE (Lazy BKPIECE)
10 BKPIECE (Bidirectionnal KPIECE)
11 KPIECE (Kinematic Planning by Interior-Exterior Cell Exploration)

12 RRT (Rapidly-exploring Random Trees)
13 RRT Connect
14 RRT*
15 T-RRT (Transition-based RRT)
16 PRM (Probabilistic roadmap)
17 PRM*
18 FMT (Fast Marching Tree algorithm)
19 PDST (Path-Directed Subdivision Trees)
20 STRIDE (Search Tree with Resolution Independent Density Estimation)

21 BiTRRT (Bi-directional Transition-based RRT)

First, we checked if the planners reach the desired pose. This is shown in Table 3.3,
where it can be seen that some planners did not converge to the solution in all 250 iterations.
These were immediately ruled out.

Table 3.3: Success rate of planners for 250 planning attempts for 110 transitions between
two postures.

1 2 3 4 5 6 7 8 9 10 11
% 100 100 100 100 98 66 100 100 100 100 100
12 13 14 15 16 17 18 19 20 21
% 99 100 99 98 100 100 100 100 100 100

Subsequently,we shifted our focus to a crucial aspect in optimizing production: cycle
times. Since short cycle times are needed to prevent bottlenecks in the production, the

50 Chapter 3. Adaptive Process Behaviour

average time required for planning a new trajectory was checked. As illustrated in Figure
3.14, some of the planners required significantly longer durations (times greater than 2
seconds are not shown for data clarity), and these were eliminated as the objective was
to generate trajectories as quickly as possible. It is important to mention that all our
calculations were performed on a computer equipped with an AMD Ryzen Threadripper
PRO 5975WX processor and 512GB of RAM. The planners presented in the figure are
numbered and correspond to the names listed in Table 3.2.

Figure 3.14: Average duration for the calculation of transition trajectory between 11
random pairs of poses, 250 times per pair, for 21 motion planning algorithms listed in
Table 3.2. The times are cut at 2 seconds, while the calculations for some planners took
longer, up to pre-defined 5 s calculation cut-off time.

We also evaluated the smoothness of the trajectories. This benchmark criteria was
computed using Equations (3.2)-(3.3). The results are shown in Figure 3.15. It should
be noted that these values refer to the smoothness of the plan itself and consider only
positions between the points of the trajectory when measured at the end of the robot.
Since some planners try to follow a straight line for as long as possible, some of them
always report zero smoothness, or they have only two points in the initial solution and,
therefore, smoothness cannot be calculated and is assigned value zero.

Finally, we analyzed the length of the generated trajectories, as expressed by Eq. (3.4),
and this information is presented in Figure 3.16. It is worth mentioning that there is the
option to simplify the path, which we tested across all the planners. We tested it for all
the planners, and after simplification, all of them reported similar length results at 3.06
rad and standard deviation of 2.09.

3.2. Experimental Evaluation and Results 51

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

0

2

4

6

8

10

12

14

16

18

Figure 3.15: Average smoothness (Equations (3.2)-(3.3)) of the generated trajectories
between 11 random pairs of poses, 250 times per pair, for 21 motion planning algorithms
listed in Table 3.2.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

0

10

20

30

40

50

Figure 3.16: Average length (Eq. (3.4)) of transition trajectory between 11 random pairs
of poses, 250 times per pair, for 21 motion planning algorithms listed in Table 3.2. The
lengths are cut at 50 rad.

52 Chapter 3. Adaptive Process Behaviour

Considering the results in Table 3.3, and Figure 3.14, we can see that planner #21, Bi-
directional Transition-based Rapidly-exploring Random Trees (BiRRT), which combines
the exploratory strength of RRTs with the efficiency of stochastic-optimization methods
(e.g., Monte Carlo optimization), and also improves performance compared to the Extend
T-RRT in terms of success rate and running time [114] performed best in the given use-
case. The chosen Bi-TRRT converged to a solution all the times, was very fast and the
resulting trajectories were smooth and short. Variations of RRT, such as T-RRT performed
practically on the same level if not better, but did not converge in completely all of the
planning attempts. Planners #1, 2, 19 and 20 were excluded because of longer and less
smooth trajectories, even though the results were very close to the chosen planner.

3.2.3 Decision making

In order to obtain the goal positions towards which the robot needs to move, we created a
decision making method that predicts what kind of a defect occurred on the product. For
this purpose, AE network described in Section 3.1.3 was trained on the data given in DB1.
Database projected to the latent space for all the parts is shown in Figure 3.17. Latent
space projections of the parameters for the good parts are marked with black and for the
faulty parts with red.

Figure 3.17: Database DB1 datapoints projected into the 3-dimensional latent space of
a deep AE with red dots marking datapoints for 32 physically available faulty parts and
smaller black dots for good parts.

The results of clustering using both (k-means and GMM) methods are shown in Figure
3.18. Clusters are marked with different colors. Except for one part, both algorithms
clustered the data in the same manner.

To check if the clustering depends on the autoencoder, we trained the deep AE with
different random initial parameters of the deep AE network. Clustering in the latent space
of 6 autoencoders (each trained with different initial parameters) is shown in Figure 3.19.
The clustering results are the same in all cases, showing that training of deep AE with
different initial parameters will change the latent space, but not the clustering.

3.2. Experimental Evaluation and Results 53

Figure 3.18: Clustering of data points in the 3-dimensional latent space of AE using K-
means (left) and GMM (right) clustering algorithms.

Figure 3.19: Clustering of NOK datapoints in latent space of AEs trained with different
initial seeds. In all cases the clustering is the same as in Figure 3.18.

By associating the latent space datapoints with the physical parts with known defects,
we can see in Figure 3.20 that these indeed match the described defects, except for one
that fits into two clusters (green and purple, shown in Figure 3.20 in the 5-th row left).
This result confirms that the clustering procedure is appropriate. Thus, for any new
datapoint, we check to which cluster it belongs using the posterior probability for all
GMM components in the latent space projection. Results for posterior probability of all
DB1 datapoints for all components are shown in Figure 3.21. Our approach proceeds with
checking the parts in the descending order of probabilities of possible defects. This means
that the motion of the robot is potentially different for each part that needs to be inspected.
We therefore generate the robot motions that place the camera at the required viewpoints
online using a suitable motion planner.

54 Chapter 3. Adaptive Process Behaviour

Figure 3.20: Manual clustering of physical parts per defect coincides with the clustering
in the latent space of the AE, depicted by the color edges and colors of clusters in Figure
3.18.

3.3. Discussion 55

Figure 3.21: Probability of defect determined by posterior distribution of GMM compo-
nents. The colors of the highest defect probability are associated with defects in Figure
3.11.

3.3 Discussion

In this chapter, demonstrating an example of the task adaptation strategy, we have shown
a method of accelerating the industrial process using the combination of NN-driven high-
level decisions and motion planners for generating the trajectories that enable the successful
execution of the task.

The presented defect prediction approach mostly depends on the available data. With
thousands of datapoints for good and faulty parts, it is possible to increase the trust in the
prediction of possible defects. Companies, however, tend to produce orders of magnitude
more of good parts than faulty parts. Thus, collecting a large database, especially at the
end of the production process where the parts that reached this point have passed the
intermediate quality check is not easy. As can be seen in the practical production example
considered in this paper, the database of good and faulty parts (DB1) can be extremely
lopsided.

Our approach checks all the parts after the final production stage, but uses the predic-
tion model to change the order of inspections and only checks the most likely defects.

Given that in our approach, the robot must frequently move between different pairs
of viewpoints, we tested which of the available motion planners is best for our practical
production process. There is no motion planner that would be best in every situation, as
also stated in [59]. For the considered production process, extensive statistical evaluation
has shown that several planners might be appropriate. The best results were obtained with
Bi-directional Transition-based Rapidly-exploring Random Trees (Bi-TRRT) method. For
the considered production process, learning 110 trajectories and then recalling them from
the database is still viable. Nonetheless, it is easy to imagine visual inspection processes
where many more motion trajectories would need to be generated. This is, however, not
necessary because the available motion planners can generate trajectories for visual quality
inspection in a fast and reliable manner.

56 Chapter 3. Adaptive Process Behaviour

For completeness of the adaptive visual quality inspection approach, we implemented
a deep neural network classifier that takes the image as the input and classifies the part as
good or faulty at the output. The results of this classification for the incomplete bottom
edge defect are shown in Figure 3.22.

Figure 3.22: Results of final visual quality inspection for the "incomplete bottom edge"
(e2) defect of several parts.

In this chapter, we presented an approach that takes the production parameters of a
real-world injection moulding production line to predict potential defects of the produced
parts. We have shown how to use autoencoders and clustering of datapoints to predict
what kind of defect might be present. The evaluation has shown that the clustering and
classification do not depend on the training of the AE networks. We have also analyzed
different motion planners to generate motions that bring visual inspection cameras to the
required viewpoints in a collision-free manner.

With this method, we closed the feedback loop between the prediction of the defect
and the camera viewpoint. For our future work, we plan to create a method that will be
able to autonomously change the production parameters based on the observed defects.
However, considerably larger databases of both good and faulty parts and also types of
defects will be required to achieve this.

It should be noted that this approach is in the middle of the pyramid and that the tra-
jectories generated with this method are not optimal. This means that further optimization
of the generated and stored trajectories can be done (for instance, using the method from
the previous chapter), allowing us to make the inspection process faster. Moreover, this
is still only adaptation of an industrial process in a known and structured environment
where the robot does not interact physically with an object, thus allowing us to make an
accurate digital twin of the system in simulation by considering only a geometry of the
scene.

57

Chapter 4

Dynamic Task and Process
Behaviour Generation

In the preceding chapter, we have shown an example of the process adaptation when
generating the trajectories. In that case, a robot did not physically interact with the
environment and we had a lot of knowledge about the task - position of obstacles, final
end-effector positions, potential errors and a fixed number of required trajectories. The
bottom of our pyramid (Figure 4.1) shows the most complicated case of the robotic learning
because the objective of dynamic task generation is to acquire a comprehensive skill set
for an infinite range of targets by interacting with the surroundings without relying on an
explicit environmental model.

Adaptation

O

A

S

T

TL

Dynamic
Process

Generation

Figure 4.1: Trajectory generation is set to be in the bottom of our classification pyramid
since it is rarely applied in commonly used robotics due to its complexity.

In this case, we only know which action the robot needs to perform - labelled with O
in Figure 4.1. We have a rough and highly inaccurate model of the environment in the
so-called source environment (this is usually simulation). By performing RL, we search for
the appropriate trajectory parameters (labelled with A in Figure 4.1) corresponding to each

58 Chapter 4. Dynamic Task and Process Behaviour Generation

instance of the action O in the source environment (labelled with S). Once we have sufficient
knowledge about the robot behaviour in the roughly modelled source environment, we begin
a process of transferring it to the more accurate target environment (T) which is usually
the real-world with a real robot. This process is called transfer learning (TL) using domain
adaptation.

Many review papers [23], [24], [115], [116] have shown the possibility of RL algorithms
to successfully obtain task knowledge from scratch. Since the algorithms presented in those
review papers usually require a huge amount of data and a lot of iterations to converge
successfully, their usage is limited to simulation environments. The perfect simulation does
not exist, and therefore the knowledge obtained this way cannot be directly applied to the
real-world, but has to be adapted. This is why, in this part of the thesis, we put the main
focus on the methods for adaptation of this knowledge - Transfer Learning (TL).

We demonstrate our approach on the robot throwing action. We have chosen this
task since it was previously already considered in RL settings [117] and because it can
be relatively accurately mathematically modelled. It should also be noted that this is an
example of the dynamic task and that the robot was throwing using the throwing spoon
in its hand. This way, the ball is not firmly attached and we cannot control the release
point, but the ball detaches itself when the arm acceleration becomes negative. We present
two similar approaches for performing TL with two different source environments and two
different robots. Our approaches are based on updating NN where the source environment
knowledge is stored and the main focus is put into accelerating this procedure using RL
algorithms. Since there is a relatively large amount of testing performed, and for the sake
of the result repeatability, we use (different) simulations as both the source and target
environments.

In addition to this, as a separate subsection, we provide benchmark of two additional
methods for storing the source environment knowledge using probabilistic approaches.
Although we do not perform TL, it provides a great baseline for the future work that
would require less user knowledge input into the domain adaptation itself.

4.1 Methodology

Our method relies on utilizing the capacity of neural networks (NN) to retain knowledge
from the source environment. Further, the network is updated using a combination of
reward-weighted policy learning algorithm (RWPL) that we introduced in Sec. 2.1.3 and
backpropagation with data obtained from the target environment.

We demonstrate two approaches, but in both cases, we use NN to store the acquired
knowledge from the source environment. In the first case, we extend our method with
using encoder-decoder type of NN that extracts only important features from the learnt
behaviour. The knowledge itself is not stored in AE network, but it enables us to use
another smaller network for storing the knowledge. In the second case, we train only one
network that stores the whole end-to-end knowledge and we update only one layer.

4.1.1 Trajectory acquisition and encoding

To demonstrate our transfer learning (TL) approach, it was necessary to acquire proficiency
in the source environment. Specifically, for the throwing action, we needed a suitable
dataset denoted as:

Dso = {W, T } , (4.1)

where W represents the trajectory parameters, while T corresponds to the landing spots.
Since all our throws were executed in the sagittal plane in front of the robot, the landing

4.1. Methodology 59

spots are always two-dimensional T ∈ R2. The vector W signifies a parameterized tra-
jectory, and its dimension depends on the chosen encoding parameters. Encoding plays a
crucial role as it ensures that all trajectories share the same size, regardless of their length.
This uniformity is essential for training the neural network, which requires a fixed number
of inputs and outputs.

As mentioned before, our methods have different source environments and they are per-
formed on different robots: Mitsubishi PA10 and PAL robotics TALOS. The first method
includes also a separate AE network for dimensionality reduction, while the second method
relies on changing only one layer of the network.

Throwing with robot arm

For the first method, 7 DoF Mitsubishi PA-10 robot equipped with a throwing spoon
was used. The knowledge in the source environment was not acquired by performing RL,
but given mathematically. Assuming that the robot is directed towards the target (that
its orientation is correct), the throwing problem can be considered as a planar problem
in the sagittal plane of the robot. Because of this, targets could be described by only
two parameters describing the distance from the base in x and z axis (T = [Tx, Ty]) and
only three joints that contribute to performing a throw were kept active and taken into
account when calculating inverse kinematics during the trajectory execution. The method
of calculating the database is presented in detail in [61]. Although the dataset was initially
represented in joint space, we aimed for our approach to be general and applicable to various
types of robots. Therefore, we transformed all the calculated trajectories into Cartesian
space using forward kinematics. Lastly, we utilized CDMP parameters for encoding the
trajectory:

W = [wwwp
i ,g

p,yp
0,www

o,go,yo
0, τ]. (4.2)

Here wwwp
i ∈ R3, i = 1, . . . , N, defines the shape of the position part of the trajectory,

gp ∈ R3 defines the final position of the trajectory and yp
0 ∈ R3 defines the initial position

of the trajectory. Similarly, wwwo describe the orientation aspect of the trajectory. Final
and starting orientations are presented with quaternions, and therefore they are in a four-
dimensional space: go ∈ R4 and yo

0 ∈ R4.

Throwing with humanoid robot

In the second method, we employed the left arm of PAL Robotics’ humanoid robot TALOS,
which was equipped with a throwing spoon. Unlike the first method, all 7 DoF of the arm
were utilized to execute the throwing action. In this case, the dataset was too complex
to be pre-calculated, so the knowledge about the task had to be autonomously acquired
during the learning process. In order to accelerate learning in the source environment,
we gave some knowledge about the task - one throwing trajectory defined as a part of
parabola to be executed. We encoded this parabola into CDMP and got parameters as
in Eq. (4.2). Having the initial trajectory encoded in such parametric representation, we
were able to start modifying it by adding random noise on parameters describing position,
wwwp

i , orientation wwwo
i and the time of trajectory execution τ . To ensure that the trajectories

remain within the same plane and maintain consistent throw direction, we specifically
modified the weights that determine the position along the x and z axes and the rotation
around the y-axis. However, during this process, we encountered challenges due to the
narrow workspace of the TALOS robot when performing actions above its head. Even
minor adjustments to the trajectory resulted in singularities or joint limit issues, limiting
our ability to modify these specific parameters effectively.

60 Chapter 4. Dynamic Task and Process Behaviour Generation

x y

z

Figure 4.2: Left image shows the initial throwing action and coordinate system of the
robot and right image shows the feasible range of angles with the origin of the arc put into
the initial position of the throw.

In order to overcome these problems, we need to position the trajectory differently [62].
This is why we decided to try rotating it around its initial point (Figure 4.2) and finding
at which angle the number of feasible trajectories is the highest. The initial position could
be rotated for 2◦ counter-clockwise and for 11◦ clockwise without the robot reaching any
joint limits, so this was taken as the range in which the optimal orientation needs to be
found. In order to check which trajectories are executable and which not, our first step
was to rotate the initial trajectory. We generated 53 trajectories in the range [2◦,−11◦]
with rotating the initial trajectory for up to 2◦ counter-clockwise and up to 11◦ clockwise
with the step of 0.25◦. In further text and images, we will use the positive sign for counter-
clockwise direction and negative for the clockwise. This set of trajectories was then encoded
in CDMP. When having the initial trajectory rotated in different angles with respect to
initial position and encoded in CDMPs, we were able to start executing and measuring
different variations of the task. In order to do that, we needed to modify forcing terms for
position and orientation for all 53 trajectories. Parameters that describe the forcing term
are weights wwwp

i , www
o
i . Since we want trajectories to stay in the consistent direction, we again

modify only the weights defining the positions in x and z axes and rotation about y-axis.
For all the c reachable points of these trajectories, we calculated manipulability measure
and distance to joint limits. Manipulability is a measure of manipulating ability of robotic
mechanisms in positioning and orienting the end-effectors [118]. This number describes
the robot’s ability to change its end-effector position given the current joint configuration.
The greater it gets, the greater range of feasible motions can be performed from that
configuration. If this number is zero, it means that the robot is in a singular configuration
and it cannot generate velocity in one of the Cartesian directions. This measure is defined
for each c-th point in the dataset as:

µc =

√
det(JJT). (4.3)

In our case of a redundant robotic arm with 7-DoF, the Jacobian matrix is of size 6x7.
Since throwing is performed only in one plane, we are not interested in the ability to
move in the direction of y-axis and in rotations about x and z axes. This is why we
used reduced Jacobian of size 3x7 where we left out corresponding rows of the matrix.
We calculated normalized values of manipulability index (µ̂c = µc/max(µc)

C
c=1) for all the

4.1. Methodology 61

executed points in the database. Distance from the joint limits is the second but equally
important parameter for successfully executing the trajectory. As a measure of distance
from the joint limits, we used the smallest normalized distance to the joint limit from all
the 7 joints of the robot arm. For all C points in the dataset it was calculated as:

ρc = min(ji)
7
i=1,

ji =
min(li,1, li,2)

|θmax
i − θmin

i | , (4.4)

li,1 = |θmax
i − θi|,

li,2 = |θi − θmin
i |,

where θmin
i , θmax

i and θi are lower, upper limit and the current state of the i-th joint,
respectively. Once we calculated all the manipulability measures µc and joint limit distance
ϕc, we also calculated the cross section of these two values:

cc =
µ̂c + ρc

2
, (4.5)

and this number was used as criteria of how apposite it is for a robot to be in that state
and the values are shown in Figure 4.3.

Figure 4.3: Cross section of the normalized manipulability measure and minimal distance
to the joint limit for the reachable points.

Since the problem is planar and we can change only the angle of the throw, our next
step was to project the mean value of cross section for all the points in the dataset that
have unique x and y coordinates to xy-plane.

With having the database of points, we needed to approximate which angle is the
best for the throw. In [62], we presented in detail three different approaches for solving
this problem. We applied evolutionary algorithm (CMA-ES [119]), used generalization,
brute-force search and got to a conclusion that the initial parabola needs to be rotated for
∼ −3◦.

Once we had a good initial trajectory positioning, we encoded it again in CDMP. We
were able to start modifying it again by adding random noise on parameters describing
position, wwwp

i , orientation wwwo
i and the time of trajectory execution τ . Again, we modify only

the weights defining the position in x and z axes and rotation about y-axis. This resulted
in having a huge database of trajectories. This time, we were also spawning the ball in
the throwing spoon before executing. Trajectories where the ball fell out of the spoon or

62 Chapter 4. Dynamic Task and Process Behaviour Generation

fell from the spoon and hit the robot were discarded. As the landing spots we have chosen
random (y, z) pairs in the vertical plane of the trajectory. This resulted in again having
the source environment database as in Eq. (4.1).

4.1.2 Storing the knowledge in neural network

Having the generated database, given with Eq. (4.1), we can train a NN using backprop-
agation. The NN thus stores the knowledge from the source domain. In the following
subsections, we present two approaches that we developed for our two use cases.

Throwing with robot arm

In the first method, we employed a combination of two neural networks to effectively
store knowledge, similar as we did in [120]. As depicted in Figure 4.4, this architecture
encompasses an AE network and a more compact network. The underlying concept behind
this approach is to condense the dimensionality of our trajectory dataset to a level beyond
the capability of CDMPs. Consequently, we store this condensed knowledge within the
smaller network, which offers the advantage of faster updates during TL.

CDMP CDMP

autoencoder

encoder decoder

𝜽𝜽𝒍𝒍 robot T ′

𝑻𝑻
Input query

RL
+

BP

NN for
storing

knowledge

accumulate target
environment data

Figure 4.4: Schematic structure of the implemented approach.

Deep AE neural networks are often used for dimensionality reduction. When training
the AE network, it learns to copy its input data to the output with the highest possible
precision, but data is pushed through different sized layers. The AEs consist of two parts:
an encoder and a decoder part. The encoder part is used to push the input data through
the network until the bottleneck is reached. This bottleneck is called latent space and
it extracts the most important features of the data. The second (decoder) part is used
to decode the data from the latent space to original representation with minimal loss of
information. In our case, we used 3-dimensional latent space:

V l = [V l
1 , V

l
2 , V

l
3]

T . (4.6)

4.1. Methodology 63

As input/output of the network, we used CDMP parameters (Eq. (4.2)) describing the
trajectories in Cartesian space in x and z axes as well as the orientation around the y axis
together with the parameter describing the time in which the trajectory is executed - τ .
This sets the input of AE network to:

V =
[
ΘT

x ,Θ
T
z ,Θ

T
roty , τ

]T
, (4.7)

Θ{.} = [wwwi,{.}, y0,{.}, g{.}], (4.8)

with y0 the starting point and g the goal.
In our implementation, we used N=20 weights per each DoF and different time scaling

factors, which summed up to having 67 input/output parameters of the AE neural network.
The neural network was fully connected with [67 15 3 15 67] neurons in each layer and all
the values were normalized in range [-1,1]. Once trained with source environment database,
this network is not changed any more. With this network, we transform our initial dataset
given in Eq. (4.1) to the dataset for initial training of the smaller neural network:

D̂so =
{
V l, T

}
. (4.9)

Therefore, our network is capable of connecting the targets to the latent space of the AE:

T 7→ V l. (4.10)

The main focus is put on the smaller network shown in yellow in Figure 4.4. In the
beginning, it is trained only with the dataset of kinematic trajectories, but its weights will
be later updated with the knowledge from the target environment using backpropagation
and RL. This update is marked with an orange circle in Figure 4.4.

Complete system for approximating the required trajectory works in such a way that
the small network receives the information about the required target, connects it to latent
space of AE network and afterwards the decoder part approximates the CDMP parameters
that are decoded and the final trajectory is sent to the robot.

Throwing with humanoid robot

For the case of throwing with a humanoid robot, we used a more straightforward approach
of connecting the landing spot directly with CDMP parameters. However, since the tra-
jectory was hard to fit into the workspace, we did not change the initial and goal position,
but only weights wwwp

i and wwwo
i that were corresponding to translational movements in x and

z axes and rotational movement about y axis as well as the time of trajectory execution
τ . We used N = 25 for the number of CDMP weights in this case, and it sets the output
of our NN to 76 parameters:

V =
[
wwwT

{x},i,www
T
{z},i,www

T
{roty},i, τ

]T
. (4.11)

We used a fully-connected network and all the inputs/outputs were normalized values
within a range of [−1, 1] and layer sizes [2, 15, 30, 40, 70, 76]. Activation function used for
this network was tanh and it was capable of mapping:

Nso(Dso) : T → V . (4.12)

Since the other parameters of CDMP are fixed we can consider that this network provides
us with an end-to-end mapping:

Nso(Dso) : T → W. (4.13)

64 Chapter 4. Dynamic Task and Process Behaviour Generation

4.1.3 Adaptation of knowledge to target environment

When the source environment knowledge is finally stored in NNs, we switch to the target
environment where it does not perform that well anymore because of the difference in
modelling. We update the NNs with the newly acquired data.

Throwing with robot arm

In the first case, the autoencoder is trained on a huge amount of synthetic data, synthesized
in a manner that covers most expected robot motions. Note that the autoencoder works on
CDMP parameter data, and thus does not need any real-world execution data. Therefore,
we are now only left with the second network, which maps the target coordinates to the
latent-space parameters of a deep autoencoder T 7→ V l. Again, a dedicated DNN can be
used for this mapping. Accelerated learning of the dedicated DNN (presented in yellow in
Figure 4.4) for mapping between the throwing target coordinates and the deep autoencoder
latent space parameters is our main focus.

Algorithm 4.1: Procedure of improving neural network connecting targets with
the latent space values.

procedure Improve NN
set targets T = {xz, zz}Zz=1

set θRL
1 based on the difference between two NNs

set i = 0
repeat

increase i
add noise on RL parameters θRL

i = θRL
i + ϵ

set corresponding NN parameters to θRL
i

set R=0
for z=1:Z

use NN to map: Tz -> θl
m

use decoder to map: θl
z -> θz

execute motion in the target domain
measure landing spot T ′

z = [x′z, z
′
z]

give reward r̂z = ||Tz − T ′
z||

R = R+ r̂z/Z
end
train NN with T ′

z -> θl
z, z=1...Z;

use RWPL to update θRL
i+1 = f(θRL, R)

reduce search noise ϵ
until i =number of updates

The first step in our algorithm is to check which weights and biases change the most
when changing the domain, i. e., when going to dynamical simulation. For this purpose, we
execute several (we used 9) throws in dynamical simulation and measure the landing spot.
These can be throws to random targets, or they can be evenly distributed over the target
area. The latter is less likely to over-fit to one random area, but it requires more knowledge
and input by the user. With this small amount of data, we retrain the dedicated network
in only several epochs (we used 10), and check the difference in the weights and biases.
We sort the weights and biases by the difference and use several ones (we used I = 15 of
both) that change the most to be modified by the RL algorithm:

4.1. Methodology 65

θ = {ω̂r, b̂r}Ir=i. (4.14)

Since these parameters are changed by both the RL and retraining, and the others only
by retraining, it is very similar as freezing the other parameters.

In the next step of transfer learning, we choose queries that are equally spread over the
robot workspace. For this, we have chosen Z equally spaced targets (we used separately 12
and 16) in the same range as in our kinematic database. In order to improve performance
of the dedicated network, we learned to throw simultaneously on all Z targets and we were
assigning them a cumulative reward. After executing throws at the targets, we retrained
the network in only one epoch by using newly obtained data, and updated θRL with
RWPL (see Sec. 2.1.5). For clarity, the procedure describing the learning steps is given in
Algorithm 4.1.

Throwing with humanoid robot

In the second setup, our source domain was simulation in Gazebo environment and our
target domain simulation in MuJoCo. After training the initial target-to-motion NN model
of the throwing skill in the source domain, we adapted the model using different approaches:

• Backpropagation (BP)

When using this approach, initially (4.12) is used as the skill model for target domain
actions. But, after a certain amount of data is gathered in the target domain, Dta ={
Wm,ta, qm,ta

}M ′

m=1
, where subscript ta stands for target, this network gets retrained

using backpropagation
NBP(Dta) : T → W. (4.15)

The training is done on all the layers (none were frozen), and using all target domain
data so that only initial parameters of the network are affected with training from
the source domain.

• Reinforcement Learning (RL)

When using Reinforcement Learning (RL) approach, all but one of the NN layers are
frozen. The weights and biases of this layer are updated using a RL algorithm, which
tries to maximize the reward. The reward needs to be predefined. For the throwing
example case, it can be based on the smallest distance of the ball-flight trajectory
from the desired target. To obtain the same precision in the whole throwing range,
it needs to be applied on a set of equally spread targets and accumulated over all the
throws,

NRL(RL(N
′
so)) : T → W. (4.16)

Here N ′, means that only one layer was changed. For RL algorithm, we used RWPL
which is described in detail in Sec. 2.1.3

• Combined RL&BP

Combined RL and BP approach is a mixture of aforementioned approaches. All the
layers but one were frozen and parameters of the layer were updated first with RL
algorithm and later this layer of the network was trained with backpropagation but
only in a small number of epochs. The training and reward updates were done on
equally spread targets.

NRL&BP(RL(N
′
ta(Dta))) : T → W. (4.17)

66 Chapter 4. Dynamic Task and Process Behaviour Generation

4.2 Experimental Evaluation and Results

Here, we describe the experimental setups used for the both experiments. After providing
explanations of the source and target environments used in both cases, we proceed with
obtained results.

4.2.1 Experimental setup

Throwing with robot arm

For the experiment involving throwing with the robot arm, the source environment knowl-
edge consisted of pre-calculated trajectories. In addition, we developed a kinematic simu-
lation in MATLAB that took into account the dimensions of the Mitsubishi PA-10 robot
(Figure 4.5-left). During the throwing action, only three joints of the robot arm were ac-
tively controlled. It is worth noting that this setup does not compromise the generality of
the approach, as the robot arms can be easily repositioned towards the target by manip-
ulating the first (bottom) joint. To perform transfer learning, we employed the MuJoCo
Haptix simulation controlled through MATLAB. Similar to the kinematic simulation, we
utilized 7 DoF Mitsubishi PA-10 robot with a throwing spoon and with only 3 joints active
while the others were fixed. This ensured consistency between the source and target envi-
ronments, as well as reduced the complexity of the TL process. The target environment
setup is depicted in Figure 4.5-right.

-1 0 1 2 3 4 5

d (m)

-0.5

0

0.5

1

1.5

2

2.5

3

h
 (m

)

Figure 4.5: Experimental setup showing Mitsubishi PA10 robot in two domains: Kinematic
model and MuJoCo simulation.

Throwing with humanoid robot

For the case of using the humanoid robot TALOS for throwing, we used inaccurate Gazebo
simulation as the source environment [121] and MuJoCo Haptix simulation connected to
MATLAB as the target environment. The target is also always in the sagittal plane of the
robot, but rotated for 3◦ towards the right side. This allowed for the maximal exploitation
of the relatively constrained workspace of the TALOS humanoid robot [62]. The throwing
action is always an over-the-head throw forward with the robot’s left arm. The throwing
action trajectories are provided to the robot in the task space, where 6 DoF motion in
space is defined. Because the arm of the TALOS has 7 DoF, it is functionally redundant
for the given task. An inverse kinematics solution is calculated with a null-space controller,
where the secondary task is to always keep all the joints as far from joint limits as possible.
The throwing action did not influence robot stability and thus, no controllers for the
maintaining of the postural stability were used.

4.2. Experimental Evaluation and Results 67

Figure 4.6: Experimental setup showing throwing action in two different domains: Gazebo
and MuJoCo simulation.

4.2.2 Transfer learning evaluation

Evaluation of throwing with robot arm

In order to evaluate our approach, we compared our method to a simple backpropagation
method. After preparing the database of executable trajectories containing 3247 targets
and corresponding trajectories, all the trajectories were encoded as CDMPs and used first
for training of the autoencoder network that contained 3 latent space values. A dedicated
network containing [2 3 15 5 3] neurons in its layers was trained to match these targets to
corresponding latent space values as given by (4.10).

We repeated two sets of experiments with different amounts of targets for learning. In
the first set, we learned Z=16 targets equally spread within the range of the robot. In
the second set of experiments, we repeated with Z=12 targets. We learned all Z targets
in 9 iterations, which sums the learning procedure to 144 shots for the case of learning
16 targets and 108 shots for the case when learning 12 targets. After each iteration of
learning, the performance of the NN was tested on 64 targets shown with red circles in
Figures 4.8-4.10. For backpropagation, we used 200 randomly chosen targets. After each
shot, NN was updated with the new data in 10 epochs and the performance was measured
on the same 64 targets as in the case of learning with the method given in Alg. 4.1.

Figure 4.7 shows the convergence of the error when doing transfer learning using 16
targets, 12 targets and when using backpropagation. Error (and reward) is given by

r̂z = ||Tz − T ′
z||, (4.18)

where, just as in Alg. 2.1, Tz is the target of z-th throw and T ′
z is the landing spot of

the same throw. Data for the case of learning 16 targets is given in red, for 12 targets in
green and for the case of BP in blue. Upper graphs show the average error convergence and
lower graphs show the maximal error convergence. We can see that the proposed algorithm
evidently outperformed BP in the number of required executions and achieved accuracy in
both cases when using 12 and 16 targets. Although the top plot shows that the average
error of throwing was even better for 12 targets, the maximal error was lowest when using
our approach and 16 targets.

68 Chapter 4. Dynamic Task and Process Behaviour Generation

0 50 100 150 200

0.015

0.02

0.025
16 targets learning

12 targets learning

backpropagation

0 50 100 150 200
0.04

0.06

0.08

0.1

Figure 4.7: Convergence of the error when we used our method on 16 targets is shown with
a red line, with 12 targets with a green line and with backpropagation with a blue line.

Results in Figure 4.8, presented as a contour plot, show an error of throwing in the
new domain (dynamic simulation) trained only using the initial kinematic database.

1.8 2 2.2 2.4 2.6

0.4

0.6

0.8

1

1.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4.8: Contour plot of the error with using the kinematic database for training the
neural network.

Figure 4.9 illustrates the error observed after the first update, which occurred after
updating the NN with 9 random targets. These targets were used to determine important

4.2. Experimental Evaluation and Results 69

parameters for RL. Therefore, this plot demonstrates the performance of the NN at the
initial stage of learning using our proposed approach.

From the plot, it is evident that the adaptation of the action commences rapidly. In just
nine shots, the maximum error decreased from approximately 14 cm to around 8 cm. These
results indicate promising initial convergence when employing a simple backpropagation
(BP) approach.

1.8 2 2.2 2.4 2.6

0.4

0.6

0.8

1

1.2

0.02

0.04

0.06

0.08

Figure 4.9: Contour plot of the error after the update of the neural network with only 9,
equally spaced targets. This also represents the initial point for our proposed approach.

Contour plot in Figure 4.10 shows the performance of the network at the end of the
training with our approach when using 16 targets. It shows that the maximal error dropped
below 4 cm at the end of the learning, while the average error was below 2 cm.

1.8 2 2.2 2.4 2.6

0.4

0.6

0.8

1

1.2

0.01

0.02

0.03

0.04

Figure 4.10: Contour plot of the error at the end of learning.

Bar plots in Figure 4.11 sum up the statistics for the average and maximal error in the
case of directly using the kinematic database, at the beginning of the learning and at the
end of the learning for the case where 16 targets were used.

The results show an obvious decrease in error at each step of the learning process.
Execution of only 9 targets and updating the network gives a 64.5% decrease in average

70 Chapter 4. Dynamic Task and Process Behaviour Generation

Figure 4.11: Bar graphs of the mean and maximal error for the case of kinematic database,
after the first update and at the end of the learning.

error. However, as it can be noticed from Figure 4.7, this backpropagation method comes
to a saturation point after approximately 100 iterations. On the other hand, a major
benefit of our method, where retraining of the network is combined with performing RL,
is that it constantly continued to improve the performance. After 144 iterations it gained
an additional 40.5% drop in the error.

Chaining of DNNs can be applied, for example, to improve classification [122]. In
our case, using a deep AE and its decoder, which is chained to the network capable of
connecting the target to CDMP parameters, has a profound impact on the effectiveness of
the approach. Because the dimensionality of the task is greatly reduced, a lower number of
"real-world" trials and RL executions is needed. Figure 4.12 shows the error of throwing
when the kinematic database is applied directly to CDMP parameters, given with (4.7)
and (4.8). As the results show, the error of throwing in the adapted domain (dynamic
simulation) is in the range of 1 m, so 50 times higher than when the dimensionality is
reduced. This is caused by the fact that AE, due to its extraction of only the important
parameters, behaves as a filter. When using directly CDMP parameters, even a small error
in one of the weights can cause a jerky trajectory that is not capable of performing the
task. Even when the throwing NN is updated with the presented approach of varying only
some of the most important parameters, the error remains in the range of half a meter and
more. On the other hand, when using the dimensionally reduced data, as in our approach,
the error is in the range of a few cm. Table 4.1 sums up the obtained results.

4.2. Experimental Evaluation and Results 71

1.8 2 2.2 2.4 2.6

0.4

0.6

0.8

1

1.2

0.5

1

1.5

1.8 2 2.2 2.4 2.6

0.4

0.6

0.8

1

1.2

0.2

0.4

0.6

0.8

Error with kinematic database (CDMP)

Error with updated database (CDMP)

Figure 4.12: Contour plot of the error with kinematic and updated database when using
CDMP instead of latent space.

AEk AEupd AEupd +RL CDMPk CDMPk

Avg 0.072 0.025 0.015 1.293 0.918
Max 0.148 0.082 0.041 1.903 0.453
NS 3247 3247+9 3247+9+144 3247 3247+9

Table 4.1: Average, maximal error and number of samples used for training of NN. Samples
obtained in a new domain (dynamic simulation) are underlined.

Evaluation of throwing with humanoid robot

We tested our proposed few-shot transfer learning approach and compared it to other
approaches in the previously presented throwing task example. The following list describes
the different experiments. Note that the same names for learning approaches are used in
Figures 4.14 – 4.16.

• Gazebo: Action execution in the initial simulation domain (Gazebo) using the orig-
inal target-to-motion NN model from the source domain using Eq. (4.12).

• Initial: Direct application of the original target-to-motion NN model, given with
(4.12) from the source domain (Gazebo) without any modification, but in the target
domain (MuJoCo).

• RL+BP: Modified target-to-motion NN model in the target domain (MuJoCo) using
Eq. (4.17). The targets for throwing are predefined and equally spread.

72 Chapter 4. Dynamic Task and Process Behaviour Generation

• RL+BP-r: Modified target-to-motion NN model in the target domain (MuJoCo)
using Eq. (4.17) but the targets for throwing are randomly chosen within the throw-
ing range.

• BP-r: Modified target-to-motion NN model in the target domain (MuJoCo) using
Eq. (4.15), but the targets for throwing are randomly chosen within the throwing
range.

• RL: Modified target-to-motion NN model in the target domain (MuJoCo) using Eq.
(4.16). The targets for throwing are predefined and equally spread.

• BP: Modified target-to-motion NN model in the target domain (MuJoCo) using Eq.
(4.15), but the targets for throwing are predefined and equally spread.

The first step in all the approaches was to get the database and to train the NN skill
model in the source domain. This was done in a highly inaccurate Gazebo simulation (poor
contact modelling and time-step synchronization when connecting to the ROS network).
This way, we acquired almost 10000 executable trajectories. After removing the trajectories
that caused the ball to drop of, hit the robot and or where ball flight was unrealistically long,
we were left with U = 3000 examples to train the NN with layer sizes [2, 15, 30, 40, 70, 76].
The database of acquired trajectories is given in Figure 4.13.

Figure 4.13: Database for training the motion-to-target NN skill model of throwing,
acquired in the source domain. From left to right: Position trajectories in Cartesian space;
Quaternion orientation trajectories; spatial trajectories with magenta color marking the
start; targets, i. e., landing spots.

In order to test how well this NN skill model performs in its domain (Gazebo), we
performed the Gazebo experiment and tested it on 25 equally spread targets: Tt =
[xt, zt]. They were chosen so that the distance from the robot (x-axis) is in the range of
xt ∈ [1.1, 2.3] m and height of target (z-axis) is in the range zt ∈ [0, 1.1] m.

4.2. Experimental Evaluation and Results 73

The protocol for the initial experiment was the same: 25 throws on equally spread
targets, but in the more stable MuJoCo Haptix simulation that was used as our target
environment.

The protocols for the remaining experiments are outlined as follows. In these experi-
ments, the throw was executed towards a set of 25 targets that were evenly distributed.
The targets (Tr) were positioned such that the x-axis coordinates ranged from 1 to 2.4,
while the z-axis coordinates ranged from 0 to 1.2 m. After collecting data on the landing
spots of all the r-targets, we proceeded to update the network using one of the proposed
methods. Following the update, we evaluated the quality of the learned model by testing
it on a separate set of test targets.

For the BP-r approach, the robot performed throws towards 25 randomly selected
targets. The resulting landing spots were recorded, and this data was used to update the
network. The precision was tested on 25 test targets.

In RL experiments, we have chosen the hidden layer with the smallest number of
parameters to be retrained, as high dimensionality of the search space may make RL too
slow. We were retraining the second layer of the NN skill model, which had 15 nodes.
This layer has only two inputs so we retrained 2 × 15 weights and 15 biases. This led us
to searching in only 45-dimensional space. Regarding the reward mechanism used in the
experiments, each r-target (target location) was evaluated separately, and a reward value
was assigned to it. The final reward for each learning iteration was calculated as the sum
of these individual reward values. The reward ri for each r-target was determined using
the following equation

R =
25∑
i=1

ri, (4.19)

ri = 1− ∥Tr,i − T ′
i∥/2,

where Tr,i represents the coordinates of the reward target, and T′
i represents the coordi-

nates of the actual hit achieved during the throwing action. The reward calculation was
based on the Euclidean distance between the reward target and the actual hit, scaled by a
factor of 2.

In RL+BP, the reward was given in the same manner, but the retraining of the
network was also added after executing throws at Tr. In this case, retraining was done in
only 10 epochs so that it does not totally cancel the parameters found by the RWPL RL
algorithm.

For RL+BP-r, everything was done in the same manner as in RL+BP, just the
targets were randomly chosen within the range.

Figure 4.14 shows the average throwing error when transferring to the target domain.
All approaches reduce the average error after several test iterations. Note that one test
iteration includes 25 throws (additional 25 were preformed for the evaluation of the learning
after each iteration). The proposed RL+BP method is the fastest of the tested methods.
Also BP-r method and RL+BP-r are relatively fast. On the other hand, BP method
consistently diverges after some time. This is because the training targets are predefined
and therefore hits are similar, thus there is not enough diversity in the data. Consequently,
the approach overfits. Qualitatively similar results, but for the maximal error of throwing,
are shown in Figure 4.15, where RL+BP method is fastest, while BP method diverges after
some time.

74 Chapter 4. Dynamic Task and Process Behaviour Generation

BP
BP

BP
BP

RL+BP
RL+BP-r
BP
BP-r
RL

Figure 4.14: Reduction of the average (left) and maximal (right) throwing error after
transitioning to the new domain (sim-to-sim) using different methods. Solid lines show the
average of 5 experiments while the shaded area depicts the standard deviation.

BP
BP

BP
BP

RL+BP
RL+BP-r
BP
BP-r
RL

Figure 4.15: Reduction of maximal throwing error after transitioning to the new domain
(sim-to-sim) with different methods. Solid line shows the average of 5 learning iterations
and shaded area depicts standard deviation.

4.2. Experimental Evaluation and Results 75

Figure 4.16 presents the accuracy of the throwing action within the throwing range area. It
is important to note the varying scales on the contour plots, indicating the different levels
of error. By analyzing the contour plots, it becomes evident that the RL+BP approach
outperforms the other methods in terms of accuracy, providing valuable insights into the
effectiveness of this combined approach in optimizing the throwing trajectory towards the
desired targets.

RL

BP-r BP

RL+BP-r RL+BP

Error in Gazebo Initial database error (MuJoCo)

Figure 4.16: Contour plots showing the throwing error after learning for different learning
approaches.

Figure 4.17 shows the averages of errors after the end of learning. The initial target-
to-motion model, when directly transferred, resulted in considerably larger error, but after
roughly 30 learning iterations, the RL+BP method matched the average accuracy, and
performed much better in maximal error. The advantages over using only BP, RL and
BP-r are clearly shown, as well as the divergent result of the BP method.

76 Chapter 4. Dynamic Task and Process Behaviour Generation

RL
+B
P-r

RL
+B
P BP BP

-r RL

RL
+B
P-r

RL
+B
P BP BP

-r RL
init
ial

Ga
zeb
o

init
ial

Ga
zeb
o

Figure 4.17: Average error (top) and maximal error (bottom) at the end of learning
(average of 5 learning trials). Error bars depict the minimum and maximum obtained
values.

In our experiments, we performed 25 throws in one iteration, however, less could be
applied. Results in Figure 4.18 show the results where only 5 equally spread throws were
applied for one iteration. Evaluation was still performed with data of 25 throws, so that
the results are comparable with the previous. However, again, these were not used for the
learning. While these results are also in simulation, the numbers of learning throws are
more realistic for real-world implementation.

Figure 4.18: Average error reduction when only 5 throws were implemented for one learning
iteration in RL+BP setting.

4.3. Probabilistic Approaches for Storing the Knowledge 77

4.3 Probabilistic Approaches for Storing the Knowledge

Previously presented methods were storing the knowledge in the networks that were trained
to connect one target to one set of parameters. However, it has been recently shown that
sometimes, non-deterministic imitation learning methods that are not trained to always
output the same solution can exhibit slightly better transferability [57]. This can be useful
when there are more simulation parameters that influence the behaviour. This is why our
approach was tested on a more complex problem of a robot manipulating a box by dragging
it on the table using only a rod as an end-effector [63]. Since the task was performed in
the task space of the robot, in order to avoid problems with calculation of the inverse
kinematics, we used a redundant Franka Panda robot with 7-DoF. The presented task is
particularly hard even for a human because it requires a lot of patience and corrections in
order to achieve the desired box position and orientation. Our setup is shown in Figure
4.19-right. The box was initialized in a random position (shown in red) and the goal for
the robot was to move the box to the desired and always the same final position (shown
in green).

ctx n

Context points
(NN input)

Predicted EE trajectory
(NN output)

...

Relative
time -1*dt 0-n*dt ...

ctx 1
ctx 0

Figure 4.19: Left: Inputs and outputs of the trajectory prediction architecture: Input
to the network are several context points. Each context point contains information about
box position and orientation (blue) and information about robot end-effector position (red)
together with relative time in which it happened (green axis). Output of the architecture
is the predicted end-effector trajectory (orange). Right: Execution of each replanned part
of trajectory on a simulated robot.

We still explore a deep neural network-based encoder-decoder motion architecture that
generalizes well between task instances, but with putting our main accent on architectures
with a potential in enabling the seamless transfer to a new domain without adding any
additional information from the user (like in Sec. 4.1.3 where we manually selected targets
for reward and evaluation). Similar to throwing, this is also a dynamic task, where the final
position of the robot is not directly related to the successful outcome of the task. We tested
two different architectures. Since the approaches are probabilistic (on the same requested
target positions, they are capable of predicting the whole distribution of the solutions
instead of only one), we had to combine them with probabilistic trajectory representations.
The approach has replanning steps during the execution, and therefore it requires ability
for smooth transitions in-between the predicted trajectory segments. This would be hard
to accomplish with ProMPs, so we combined the motion generation with a novel, ProDMP
encoding methodology [56]. Except for enabling us for smooth transitions, it is much faster
than regular DMPs in its integration step [56], thus the forward pass through the network
is also faster when approximating the trajectory. It should be noted that these movement
primitives are a good choice for this task, but they are not capable of decoupling the

78 Chapter 4. Dynamic Task and Process Behaviour Generation

velocity profile from the trajectory and could not be used for the optimization processes
as presented in Chapter 2. Detailed information including auxiliary math describing the
ProDMPs is given in [56].

The applicability of the proposed approach depends on the size of the latent space, the
means of sampling and the level of aggregation of data before predicting the behaviour of
the executed dynamic task. The transferability, on the other hand, depends on the diversity
of data. Below, we explore these aspects of motion generation that should maintain the
correspondence of a dynamic task.

4.3.1 Methodology

The database for training the neural network was acquired by human demonstration where
the person was kinaesthetically guiding a simulated robot in order to push the box from
the randomly initialized position to the final position.

Two different architectures presented in this section were tested with two different ways
of choosing the action. The action could be chosen from the distribution by only randomly
sampling from the distribution or by taking the mean of sampled parameterized actions.
With both architectures, the input of the neural network was the current state of the box
(position and orientation) together with the current state of the robot (position of the
end-effector). Since the task is complex, we also introduce the so-called aggregation where
we do not only take the current state in consideration when choosing the next action, but
also take into consideration multiple previous robot/box states. In addition to this, we
also briefly experiment with determining the required latent space size of the network.

The goal of both architectures is to predict the motion trajectory based on the state
of the setup. The state of the setup can be described using information about current box
position in x and y axis and orientation about z axis (denoted with αbox) as well as robot
end-effector position and velocity in x and y axis. It should be noted that z position of
the end-effector is held constant and its shape was cylindrical so that its orientation does
not have an influence on the movement of the box. For this reason, those two values were
left out. Together with the information about the relative time at which the system was in
the given state, we obtain the necessary information for predicting the trajectory - Figure
4.19 (left). This information is called context and each context point contains eight values:
ctx = [xe, ye, ẋe, ẏe, xbox, ybox, αbox, t].

As shown in depictions of the architectures in Figures 4.20 and 4.21, several (m) context
points are first sent to two encoders (µ and σ2) in order to get the latent space observation
(µr) and an uncertainty σ2

r measuring how important this observation is. The following
step is to obtain latent state posterior p(z|ctx) which is given by a factorized multivariate
Gaussian distribution N (z|µz,σ

2
z). For this purpose, aggregator is used. As an input, it

takes the set of latent observations and their uncertainties together with the prior distri-
bution: (µA,σ

2
A). Prior distribution was set to be normalized Gaussian distribution with

zero mean. For both architectures, this part is the same. The difference comes from the
part where the trajectory representation is sampled and decoded.

The first architecture that we used included Parameter-Based (PB) Decoder [123]. This
decoder consists of two decoders that take the posterior distribution as an input and output
mean value of the ProDMP weights and goal (µwg) as well as Cholesky decomposition of
the covariance matrix of the weights and goal distribution (Lwg). This is further used by
ProDMP architecture that is, when given initial position and velocity of the end-effector
(y, ẏ), able to convert these values into the mean and covariance of the trajectories: µτ ,
Στ . For training of this network, negative log-likelihood cost function that increases the
possibility of observing the trajectory y, given the distribution with mean µτ and covari-

4.3. Probabilistic Approaches for Storing the Knowledge 79

ance Στ that are determined with decoder NN parameters θ, was used:

C(τ ,yb, ẏb, ctx) = − logN (y|µτ ,Στ ,θ). (4.20)

An important thing to note with this architecture is that the trajectory is sampled from
the distribution of ProDMP parameters when executing the forward pass in the evaluation
so that only one trajectory is decoded.

𝜇𝜇 encoder

𝜎𝜎2 encoder

[ctx]m

[𝜇𝜇𝑟𝑟]m

[𝜎𝜎𝑟𝑟2]m

aggregator
𝜇𝜇𝑍𝑍

𝜎𝜎𝑍𝑍2

𝜇𝜇 decoder

𝜎𝜎2 decoder

𝜇𝜇𝑤𝑤𝑔𝑔

𝐿𝐿𝑤𝑤𝑔𝑔

𝜇𝜇𝜏𝜏

Σ𝜏𝜏

𝜇𝜇𝐴𝐴,𝜎𝜎𝐴𝐴2

ProDMP

𝑦𝑦𝑏𝑏 , 𝑦̇𝑦𝑏𝑏

Figure 4.20: Architecture with PB decoder.

The second, Monte-Carlo (MC) architecture, was based on taking the action sample
directly in the latent space instead of taking the sample from the space of ProDMP weights
and goal. This architecture is presented in Figure 4.21. It also takes posterior distribution
as the starting point for the decoding process. From this distribution it takes n samples
[z]n and they are input to one decoder network that has weights and goal as the output:
[wg]n. Variance of the posterior is directly forwarded to the second decoder that outputs
the distribution of the weights and goal - σ2

wg
. From these two values, ProDMPs are able to

calculate m trajectories [τ]m and variance σ2
τ . Cost function used to train this network was

negative marginal log-likelihood. This function increases probability of observing ground-
truth trajectory given the several (n) samples from the distribution and variance (both
determined by decoder parameters θ):

C(τ ,yb, ẏb, ctx) = − logN (y|[τ]n,σ2
τ ,θ). (4.21)

𝜇𝜇 encoder

𝜎𝜎2 encoder

[ctx]m

[𝜇𝜇𝑟𝑟]m

[𝜎𝜎𝑟𝑟2]m

aggregator
𝜇𝜇𝑍𝑍

𝜎𝜎𝑍𝑍2

𝑧𝑧 decoder

𝜎𝜎2 decoder

𝑤𝑤𝑔𝑔 n

𝜎𝜎𝑤𝑤𝑔𝑔
2

[𝜏𝜏]n

𝜎𝜎𝜏𝜏2𝜇𝜇𝐴𝐴,𝜎𝜎𝐴𝐴2

ProDMP
[z]n

𝑦𝑦𝑏𝑏 , 𝑦̇𝑦𝑏𝑏

Figure 4.21: Architecture with MC decoder.

An important thing to note with this architecture is that the trajectory is sampled in
the latent space distribution. Consequently, when using the forward pass in the evaluation,
only z decoder is used and only one trajectory is predicted.

The last part of our architecture is based on ProDMPs. This new method [56] en-
ables for combining the benefits from both Dynamic Movement Primitives (DMPs) [47]
and Probabilistic Movement Primitives (ProMPs) [55]. Having DMP weights and goals
determined by decoder network and given the initial position and velocity as the initial
conditions (yb, ẏb), this method is able to provide trajectory distribution given as a multi-
variate Gaussian distribution.

80 Chapter 4. Dynamic Task and Process Behaviour Generation

4.3.2 Experimental protocol and results

In the first step of our research, the complete database of the human trajectories was col-
lected. For this purpose, we used a simulated Panda Franka robot in MuJoCo environment.
Using the computer mouse for kinesthetic guidance of the robot, we acquired the database
of 300 trajectories and stored all the relevant data - context points. All the trajectories
lasted 2 seconds.

This database was further used to train both architectures presented in Figures 4.20
and 4.21. Both mean and variance encoder consisted of the input layer size of 8 that
corresponds to the dimensionality of our context. All the encoders used consisted of 128
neurons in 3 hidden layers. Output size, determining also the latent space size, was chosen
to be S ∈ {8, 16}. Consequently, decoders had input size S. Three hidden layers consisting
of 128 neurons were used here just as with the encoders, and output size was set to be 52.
This was caused by us choosing for both degrees of freedom to use 25 radial basis functions
in ProDMP and one goal position. Activation function used in our case was Leaky-ReLu.

We trained both architectures (PB+agg and MC+agg) with and without aggregation
(PB and MC). All the training was done in 10000 epochs and (for the sake of completeness
of the results) in 10 different seeds. For the cases where aggregation was used, we used 5
last context points, while in other cases we used only the last. For both cases of using MC
decoders, we used n = 16 Monte-Carlo samples for choosing the latent space variable. For
each randomly chosen point of the trajectory, only the following 0.5 s were considered when
training. When evaluating the trained architectures, we considered the following cases:

• MC + agg (mean): MC architecture combined with aggregation was used with 5
context points in both training and evaluation. In the evaluation case, only mean z
variable was used and decoded.

• MC (mean): MC architecture without aggregation was used in both training and
evaluation. In the evaluation case, only mean z variable was used and decoded.

• PB + agg (mean): PB architecture combined with aggregation was used with 5
context points in both training and evaluation. In the evaluation case, only mean of
the trajectory distribution was used.

• PB (mean): PB architecture without aggregation was used in both training and
evaluation. In the evaluation case, only mean of the trajectory distribution was used.

• MC + agg (stochastic): MC architecture combined with aggregation was used
with 5 context points in both training and evaluation. In the evaluation case, z
variable was sampled from the distribution and decoded.

• MC (stochastic): MC architecture without aggregation was used in both training
and evaluation. In the evaluation case, z variable was sampled from the distribution
and decoded.

• PB + agg (stochastic): PB architecture combined with aggregation was used with
5 context points in both training and evaluation. In the evaluation case, trajectory
was sampled from the final trajectory distribution.

• PB (stochastic): PB architecture without aggregation was used in both training
and evaluation. In the evaluation case, trajectory was sampled from the final trajec-
tory distribution.

4.3. Probabilistic Approaches for Storing the Knowledge 81

In the evaluation of the learned policy, neural network was always predicting the following
0.5 s of the trajectory based on the provided context. Total allowed length of the trajectory
was 4 s, thus leading to 8 replanning steps.

Figure 4.22 shows the average error in the box position and orientation for the latent
space sizes of 8 and 16. Higher latent space sizes were also tested, but they did not
bring any increase in the performance. Lower latent space sizes were excluded because
they were insufficient to catch the complexity of the observation. From the graphs, it can
be seen that using the mean rather than randomly sampled variable resulted in better
performance. Also, it is noticeable that aggregation increases the performance when using
the PB architecture while the difference when applied on MC architecture was much lower.
The best performance was observed when using the MC+agg and PB+agg methods.

MC+agg
(mean)

MC
(mean)

PB+agg
(mean)

PB
(mean)

MC+agg
(st)

MC
(st)

PB+agg
(st)

PB
(st)

0.00

0.01

0.02

0.03

0.04

0.05

er
ro

r
(m

)

Position error - latent size: 8

MC+agg
(mean)

MC
(mean)

PB+agg
(mean)

PB
(mean)

MC+agg
(st)

MC
(st)

PB+agg
(st)

PB
(st)

0

2

4

6

8

10

12

14

er
ro

r (
◦)

Orientation error - latent size: 8

MC+agg
(mean)

MC
(mean)

PB+agg
(mean)

PB
(mean)

MC+agg
(st)

MC
(st)

PB+agg
(st)

PB
(st)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

er
ro

r
(m

)

Position error - latent size: 16

MC+agg
(mean)

MC
(mean)

PB+agg
(mean)

PB
(mean)

MC+agg
(st)

MC
(st)

PB+agg
(st)

PB
(st)

0

2

4

6

8

10

12

er
ro

r (
◦)

Orientation error - latent size: 16

Figure 4.22: Bar graphs showing the average error in position and orientation for all the
tested cases for latent space sizes 8 and 16.

The performance was tested for all the experiments in 10 different seeds and with
using 20 test trajectories. Histograms showing the distribution of the error in position and
orientation are shown in Figure 4.23.

Since stochastic methods are, due to their diversity in the data, important for the
transferability of the learned policy to the situations where the parameters of the task
are slightly different (changed friction or mass of the box), we additionally tested PB+agg
method and MC+agg method for the error increase with respect to the increase in standard
deviation of the trajectories.

Average error is given as
∑S

s=1

∑K
k=1(|e|xs,k + |e|ys,k + 0.1|e|φs,k), where S is the number

of seeds, K is the number of test trajectories for each seed and |e|xs,k, |e|
y
s,k, |e|

φ
s,k are er-

rors in the final box position in x, y axis given in meters and orientation about z axis

82 Chapter 4. Dynamic Task and Process Behaviour Generation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

error (m)

0

20

40

60

80

100

120

sa
m

pl
es

Position error - latent size: 8

MC + agg (mean)

MC (mean)

PB + agg (mean)

PB (mean)

MC + agg (stochastic)

MC (stochastic)

PB + agg (stochastic)

PB (stochastic)

0 20 40 60 80

error (◦)

0

20

40

60

80

100

120

140

sa
m

pl
es

Orientation error - latent size: 8

MC + agg (mean)

MC (mean)

PB + agg (mean)

PB (mean)

MC + agg (stochastic)

MC (stochastic)

PB + agg (stochastic)

PB (stochastic)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

error (m)

0

20

40

60

80

sa
m

pl
es

Position error - latent size: 16

MC + agg (mean)

MC (mean)

PB + agg (mean)

PB (mean)

MC + agg (stochastic)

MC (stochastic)

PB + agg (stochastic)

PB (stochastic)

0 20 40 60 80

error (◦)

0

20

40

60

80

100

120

sa
m

pl
es

Orientation error - latent size: 16

MC + agg (mean)

MC (mean)

PB + agg (mean)

PB (mean)

MC + agg (stochastic)

MC (stochastic)

PB + agg (stochastic)

PB (stochastic)

Figure 4.23: Histogram showing the distribution of the error in position and orientation
for different latent space size.

given in degrees, respectively. For obtaining error increase as a consequence of standard
deviation, entropy of the MC policy was varied by multiplying the standard deviation σ2z
with coefficients [0, 0.1, 0.5, 1.0, 2.0, 5.0, 10, 15] and for the case of PB multiplying Cholesky
of the covariance matrix with coefficients [0, 0.1, 0.5, 1.0, 2.0, 5.0]. Larger coefficients con-
sequently resulted in higher standard deviation of the resulting trajectories. Graphs in
Figure 4.24 show that MC+agg method offers solutions of higher diversity while maintain-
ing the smaller error. This makes it more suitable for acquiring the policy that will be
later transferred into the slightly different environment [57].

0.10 0.15 0.20 0.25 0.30 0.35

standard deviation

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

MC + agg

PB + agg

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275

standard deviation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

er
ro

r

MC + agg

PB + agg

Figure 4.24: Error with respect to the increase in standard deviation of the learned policy.

4.4. Discussion 83

4.4 Discussion

In this chapter, we have shown and evaluated methods that enable faster and safer learning
of a skill on a robot. Learning from scratch in the source domain is not in the scope of
this chapter, but the main focus is on the application of the previously obtained knowledge
to the target environment. We have presented two different deterministic approaches that
managed to successfully adapt the knowledge in the reasonable and real-world realistic
number of iterations. Furthermore, we have shown how we can store the knowledge and
how we can accelerate the adaptation of this knowledge using RL instead of the traditional
backpropagation. This is the most complicated case in this thesis and therefore it is put
on the bottom of our pyramid. With having a successful policy implemented on the real
robot, each of the separate trajectories can be further optimized (filtered, refined to satisfy
minimal-jerk criteria or made shorter) using RL or approaches similar to the approach
from Chapter 2. Also, they can provide us with planning of the specific trajectories for a
subset tasks and replace planners from Chapter 3.

The topic of discussion is generality of the proposed approaches, which was applied only
for a single task and with a lot of user-knowledge input into the preparation. An example of
input user knowledge is the even spread of the targets for learning. The overall approach is
not different from transfer learning for visual tasks, where one utilizes the already learned
feature extraction of a given, trained network [34]. Similar to this approach, they take a
pretrained network and use it as a starting point to learn a new task much faster. This new
task might be something very specific, for example classification of some new, previously
not learned objects. Even in this case the classification will be better if the images of
the new objects cover as much viewpoints and diversity as possible. The latter are again
provided by the user.

However, there is still a difference in robotic movement generation and images: For the
robotic actions, there are RL methods of learning and obtaining the dataset from scratch.
Therefore, we introduced probabilistic methods that (due to their higher resistance to
changed environment) provide a baseline for the learning where less user knowledge will
be needed when performing TL.

Throwing with robot arm

The presented approach has shown that even a smaller number of required executions in the
target domain (28% smaller for the case of 16 targets and 46% for 12 targets) was enough
to outperform conventional backpropagation approach (Figure 4.7). The approach can
be further extended, by adding another layer, and having three or even more consecutive
domains: kinematic 7→ dynamic 7→ real-world.

The proposed approach provides a method for sim-to-real transfer learning with domain
adaptation, where RL is applied to modify the most changed neural network parameters.
Thus, the changing of these parameters is affected by both retraining and RL, which acts
similar as freezing of a part of the network, because the most changed part is changed
much more. Application to robot throwing and transfer from simple kinematic to complex
dynamic simulation, which stands in place of the real-world, has shown that the approach
can considerably accelerate the learning in the adapted domain.

In the future we will test the approach in consecutive kinematic 7→ dynamic 7→ real-
world mapping. The possibility of executing initial policy in the real-world has shown great
potential and TL from the dynamic simulation (Figure 4.25a) to the real-world (Figure
4.25b) should behave similar as in the presented sim-to-sim environment. Despite dealing
with only several hundred target environment throws, the task has turned out to be quite
challenging.

84 Chapter 4. Dynamic Task and Process Behaviour Generation

(a)
(b)

Figure 4.25: Experimental setup for evaluation of TL. (a) Mujoco dynamic simulation. (b)
Mitsubishi PA-10 robot in its initial posture (left), after the release of the ball (center),
and when the ball lands (right).

Throwing with humanoid robot

The proposed few-shot transfer learning in this section was shown to be faster than simply
applying backpropagation over the complete NN skill model, and faster than using RL or
BP on one layer of the NN model, while keeping the other layers intact. The results show
that roughly 20 to 30 iterations were needed to reach a learning plateau. Since 25 throws
were applied in one iteration, that still amounts to a lot of throws. But, learning in the
source domain required roughly 3000 throws, thus the result of transfer learning requires
an order of magnitude less throws.

The RL+BP experiment showed the best results, but they were hardly any better than
BP-r. Here it should be noted that the structure of the DNN can have a considerable effect
on the applicability of this approach. For example, an encoder-decoder type of NN, where
RL was applied to the smallest, latent-space layer, could probably have a much larger
effect. However, such a network would require a larger source domain database to train.
Testing different NN skill model network structures remains part of our future work.

Real-world implementation, shown in Figure 4.26, clearly shows the capability of TA-
LOS robot throwing the ball in the same configuration as in simulation. Given the com-
plexity of the TALOS robot, not enough were implemented to show actual sim-to-real
transfer.

The proposed few-shot sim-to-real transfer learning using RL+BP approach on only
one layer of the end-to-end DNN skill model has shown to accelerate learning in the target
domain, and has outperformed other tested methods. In the future, we will test different
DNN structures and fully evaluate the approach on the real robot.

Figure 4.26: Image sequence of a throw with TALOS humanoid robot in MuJoCo simula-
tion environment, and in the real-world. Both represent the target domain, but only initial
throwing action for transfer learning to the real-world has been obtained.

4.4. Discussion 85

Probabilistic approaches

Presented probabilistic approaches show the potential benefits of pairing the ProDMP
approach with neural network in order to obtain successful imitation learning policies
for dynamic tasks. Since, once trained, these methods can provide the whole spectre of
different solutions, they are more probable to find the right solution quicker and therefore
converge faster in the adaptation phase to the new domain. This is due to their exploration
phase not being based on random sampling only, but also included in the probabilistic
nature of the predicted trajectories. Moreover, since they are also trained on the same
task in the different environment, they are not that much dependent on setting up the
exploration noise, and therefore it is less probable that some parameters will produce the
trajectory that is not executable. Additionally, we have shown benefits of sampling the
trajectory directly in the latent space of encoder-decoder network and positive influence
of aggregation to the final policy. We plan to continue research in the direction of using
probabilistic approaches for few-shot transfer learning to a new environment. In the future,
we intend to use the MC or MC+agg models since they will provide higher precision than
PB or PB+agg models, as shown in results, while also having higher diversity of the data,
as shown in Figure 4.24, thus making the TL easier as reported in [57].

87

Chapter 5

Discussion and Outlook

This thesis focuses on the exploration and development of techniques for learning au-
tonomous robot behaviours. Throughout the presented research, we have utilized a top-
down approach through our learning-division pyramid, which allowed us to introduce vari-
ous levels of robot autonomy. As we progressed from the top to the bottom of the pyramid,
the complexity of autonomous behaviour generation was increasing. For each level, we pro-
vided illustrative examples to demonstrate the capabilities and applications of autonomous
robots. Additionally, we highlighted notable advancements in the field corresponding to
each level of autonomy.

First, we started from the top of our pyramid focusing on the most straightforward
task where the trajectory was known but not optimal. We introduced an automatized
method for extracting and parametrizing the trajectories from a CAD model of an object
and used CDMPs with explicitly defined velocity profile. We further applied a model-free
learning approach that solely relies on the sharpness of the image as a learning criterion.
Our method offers the advantage of expediting the setup process of traditional factory lines
used for large-scale serial production. It assumes that the environmental conditions remain
constant and unchanged throughout the production lifespan. It is worth noting that even
in this task, achieving complete autonomy was not possible due to the requirement for
the user to manually select the path and breakpoints on the CAD model. In our future
work, we intend to address these challenges. While the user will still need to choose the
path, we aim to automate the process of segmenting it into twice differentiable segments.
Furthermore, as the availability of CAD models is not always guaranteed (particularly in
older production lines or cases where it is considered proprietary information), we plan
to employ neural networks capable of image processing to obtain the model and initial
trajectory.

Moving on to the middle segment of the learning-division pyramid, we delved into the
complexities of accelerating an entire industrial process. As an example, quality inspection
with an in-hand camera task was chosen. This case presented a higher level of complexity
compared to the previous level, since the trajectories were unknown. However, we pos-
sessed substantial knowledge about the task at hand. Specifically, we were aware of all the
desired goal positions, which were finite in number. Additionally, we had access to a model
of the robot and its environment and a manually labelled dataset consisting of defective
parts and their corresponding production line parameters. We used the latent space of the
AE network to cluster different types of errors. Based on the knowledge of the camera-
object relationship, we were able to use the motion planners to generate trajectories. It is
important to note that the generated trajectories were not optimal in terms of time or path
distance. However, these trajectories could be iteratively optimized using RL or a similar
optimization process as used at the top of the pyramid. Despite the existence of numer-

88 Chapter 5. Discussion and Outlook

ous potential trajectories, they are frequently executed throughout the production cycle.
As the setup remains unchanged throughout the entire production lifespan, a database
of transition trajectories can be constructed. RL can use past experience stored in this
database to iteratively update the trajectories, resulting in a more optimized production
line over time. In the future, we plan to implement an optimization method that incor-
porates the collected database. Additionally, we aim to explore the possibility of training
NN to execute motions in a more optimal manner compared to traditional planners. This
step would come after the completion of RL optimization. The intention is to replace
the storage-intensive database utilized during the optimization process with a trained NN.
This replacement would not only reduce the storage requirements but also enable faster
planning times, as the forward pass through the NN is generally quicker than traditional
planners. By leveraging the advantages of NNs, we aim to enhance the efficiency and
effectiveness of motion planning in the context of autonomous robot behaviour.

In the bottom part of our learning-divided pyramid, our efforts were directed towards
advancing approaches for achieving fully autonomous learning. However, it is important to
note that this thesis did not specifically cover the learning of complete skills from scratch in
simulation of a robot, as this topic has already been extensively researched and has yielded
remarkable results. Instead, our primary focus was on advancing transfer learning (TL)
methodologies to facilitate the transition of knowledge from simulated environments to real-
world applications. We introduced two deterministic methodologies for storing knowledge
acquired from source environments and conducted a benchmark study to evaluate the
effectiveness of combining RL and backpropagation techniques in efficiently transferring
this knowledge to the target environments. By evaluating different TL methodologies,
we aimed to bridge the gap between simulated learning and real-world applications, thus
taking a significant step towards practical implementation of autonomous learning in real-
world scenarios. It is important to acknowledge that these approaches still rely on human
knowledge to be provided as prior information during the learning process. In our case, we
needed to have an understanding of the realistic throwing range of the robot and ensure
that the targets were evenly distributed in space. This prior knowledge was essential for
defining the reward function, which aimed to optimize results across the entire range of
tasks rather than overfitting to specific instances. By incorporating human knowledge into
the learning process, we aimed to guide and shape the learning algorithms to achieve faster
learning and to ensure that the learned behaviours were optimized in a meaningful and
practical manner. In our future work, we aim to remove the reliance on prior information
and make the learning process more autonomous. One of the approaches we plan to explore
is presented in the Section 4.3 and it is based on AE networks combined with probabilistic
representations of trajectories [55], [56]. This approach aims to enhance the flexibility and
adaptability of the learning process. Once trained, these methods are more resistant to
changes in the environment and require less tuning of RL algorithm parameters such as
exploration noise. This resistance is caused by the fact that for the small changes in the
environment, their distribution already contains the required solution. Therefore, TL is
based only on changing the mean until all the predicted actions from the distribution are
capable of successfully performing the task.

We are currently working on developing an architecture that will provide a pipeline
for the full end-to-end learning with the capabilities of TL without adding the additional
human knowledge into the adaptation [63]. The focus of our future work lies in applying
transfer learning (TL) techniques to various tasks to demonstrate that the learned knowl-
edge can be effectively transferred and generalized. By pursuing these research directions,
we aim to advance the autonomy of robot learning and promote the ability to acquire
behaviours without heavy reliance on predefined information or specific prior works.

89

Chapter 6

General Summary and Conclusions

All the initially specified hypotheses and goals were successfully addressed in the thesis.
Moreover, we provided a classification of the autonomous behaviour based on the complex-
ity as well as the frequency of their usage.

In the first chapter, we have successfully developed an automatized method for ex-
tracting the path and parametrizing the trajectory in order to encode it in the parametric
form of CDMPs that can be further optimized with respect to time, as stated in our first
contribution. We also introduced the combination of ILC and RWPL that is capable of
successfully tuning the robot velocity by taking image sharpness as an input better than
other, more widely used learning algorithms. This way, we have confirmed our hypothesis
that autonomous learning such as reinforcement learning and iterative learning control can
be used for the optimization and that the motion acquired this way is faster and easier to
acquire than human-calculated motion.

In the second chapter, we have shown that motion planners are capable of generat-
ing the trajectories online and that they are not a bottleneck in the adaptive industrial
processes as stated in our second hypothesis. Since the general solution for choosing the
right motion planner does not exist and not all the planners are fast enough, we have
presented a comprehensive method of benchmarking and choosing the right one. In the
same chapter, we have demonstrated that AI is capable of predicting the possible defects
based on the process parameters. We analyzed the data from the functional production
line and exploited AI methods to determine the points from which the part needs to be
checked. Precisely, we employed AE network to reduce the dimensionality and unsuper-
vised learning to cluster the parts in its latent space. With successful clustering, we have
shown that we can approximate which error is the most likely to happen. A combination
of AE error prediction and fast motion planners has confirmed our second hypothesis that
the industrial processes can be adapted and accelerated autonomously.

The third part of the thesis focuses on methods for closing the sim-to-real gap. Al-
though not the main topic, we have presented the methods that helped us acquire the
knowledge in the source environment. By using different neural network structures, we
have managed to store this knowledge from the source environment. Despite not perform-
ing great, this knowledge was initially executable in the target environment (both in the
dynamic simulation and on the real-robot) and therefore we prove that this knowledge
is not wasted, but it can be reused to jump-start learning in the changed environment as
stated in our fourth hypothesis. In the same chapter, we developed two architectures where
RL successfully accelerated the adaptation process compared to classical backpropagation
method as stated in our fifth hypothesis. With this, we managed to perform adaptation in
the reasonable number of target environment executions and therefore achieved a step fur-
ther towards fully autonomous learning. Additionally, we demonstrated and benchmarked

90 Chapter 6. General Summary and Conclusions

the quality of the source environment policy for two different probabilistic approaches.
Since it is proven in [57] that these methods are more robust to the environment change,
and they also remove strict dependency of the manual tuning of the hyperparameters used
in algorithms, we plan to examine the possibilities of using them for advancing the methods
for closing the sim-to-real gap in the more unified and general manner.

91

References

[1] T. Gašpar, B. Ridge, R. Bevec, et al., “Rapid hardware and software reconfiguration
in a robotic workcell,” in IEEE 18th International Conference on Advanced Robotics
(ICAR), 2017, pp. 229–236.

[2] T. Gašpar, M. Deniša, P. Radanovič, et al., “Smart hardware integration with
advanced robot programming technologies for efficient reconfiguration of robot
workcells,” Robotics and Computer-Integrated Manufacturing (RCIM), vol. 66,
no. 101979, 2020.

[3] Y. Koren, “Reconfigurable manufacturing system,” in CIRP Encyclopedia of Produc-
tion Engineering, S. Chatti, L. Laperrière, G. Reinhart, and T. Tolio, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2019, pp. 1417–1423.

[4] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Heidelberg:
Springer-Verlag, 2007.

[5] J. Silvério and S. Calinon, “Robot learning in factories of the future: Adaptability,
redundancy and exploitation of movement options,” in IROS Workshop: Factory
of the Future: How to digitalize the robot-aided manufacturing process in Industry
4.0?, Macau, China, 2019.

[6] J. Kim and E. Croft, “Online near time-optimal trajectory planning for industrial
robots,” Robotics and Computer-Integrated Manufacturing (RCIM), vol. 58, pp. 158–
171, 2019.

[7] D. Meike, M. Pellicciari, and G. Berselli, “Energy efficient use of multirobot produc-
tion lines in the automotive industry: Detailed system modeling and optimization,”
IEEE Transactions on Automation Science and Engineering, vol. 11, no. 3, pp. 798–
809, 2014.

[8] L. Žlajpah, “On time optimal path control of manipulators with bounded joint
velocities and torques,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), vol. 2, Minneapolis, MN, USA, 1996, 1572–1577 vol.2.

[9] Z. Miljković and M. Petrović, “Application of modified multi-objective particle
swarm optimisation algorithm for flexible process planning problem,” International
Journal of Computer Integrated Manufacturing, vol. 30, no. 2-3, pp. 271–291, 2017.

[10] L. Pérez, Í. Rodríguez, N. Rodríguez, R. Usamentiaga, and D. F. García, “Robot
guidance using machine vision techniques in industrial environments: A comparative
review,” Sensors (Basel, Switzerland), vol. 16, no. 335, 2016.

[11] H. Wang, J. Wang, W. Chen, and L. Xu, “Automatic illumination planning for
robot vision inspection system,” Neurocomputing, vol. 275, pp. 19–28, 2018.

[12] N. Herakovič, “Robot vision in industrial assembly and quality control processes,”
in Robot Vision, Rijeka: IntechOpen, 2010, ch. 26, pp. 501–534.

92 References

[13] Che-Seung Cho, Byeong-Mook Chung, and Moo-Jin Park, “Development of real-
time vision-based fabric inspection system,” IEEE Transactions on Industrial Elec-
tronics, vol. 52, no. 4, pp. 1073–1079, Aug. 2005.

[14] D. Schreiber, L. Cambrini, J. Biber, and B. Sardy, “Online visual quality inspection
for weld seams,” The International Journal of Advanced Manufacturing Technology,
vol. 42, no. 5, pp. 497–504, 2009.

[15] R. Bevec, T. Gašpar, and A. Ude, “Robot-driven autofocus control mechanism for
an in-hand fixed focus camera,” in Advances in Service and Industrial Robotics,
N. A. Aspragathos, P. N. Koustoumpardis, and V. C. Moulianitis, Eds., Cham:
Springer International Publishing, 2019, pp. 551–559.

[16] Z.-G. Wu, C.-Y. Lin, H.-W. Chang, and P. T. Lin, “Inline inspection with an indus-
trial robot (IIIR) for mass-customization production line,” Sensors, vol. 20, no. 11,
2020.

[17] M. Montironi, P. Castellini, L. Stroppa, and N. Paone, “Adaptive autonomous posi-
tioning of a robot vision system: Application to quality control on production lines,”
Robotics and Computer-Integrated Manufacturing (RCIM), vol. 30, no. 5, pp. 489–
498, 2014.

[18] Z. Lončarević, S. Reberšek, A. Ude, and A. Gams, “Randomized robotic visual qual-
ity inspection with in-hand camera,” in Intelligent Autonomous Systems (IAS) 17, I.
Petrovic, E. Menegatti, and I. Marković, Eds., Cham: Springer Nature Switzerland,
2023, pp. 483–494.

[19] T. Mac, C. Copot, D. Tran, and R. Keyser, “Heuristic approaches in robot path
planning: A survey,” Robotics and Autonomous Systems (RAS), vol. 86, pp. 13–28,
2016.

[20] A. Khan, C. Mineo, G. Dobie, C. Macleod, and S. Pierce, “Vision guided robotic
inspection for parts in manufacturing and remanufacturing industry,” Journal of
Remanufacturing, vol. 11, Apr. 2021.

[21] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajec-
tory planning algorithms: A general overview,” in Motion and Operation Planning of
Robotic Systems: Background and Practical Approaches, G. Carbone and F. Gomez-
Bravo, Eds. Cham: Springer International Publishing, 2015, pp. 3–27.

[22] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for
robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-2, pp. 1–142, 2013.

[23] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep re-
inforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[24] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement learning
for multiagent systems: A review of challenges, solutions, and applications,” IEEE
Transactions on Cybernetics, vol. 50, no. 9, pp. 3826–3839, 2020.

[25] R. Pahič, A. Gams, and A. Ude, “Reconstructing spatial aspects of motion by image-
to-path deep neural networks,” IEEE Robotics and Automation Letters (RAL),
vol. 6, no. 1, pp. 255–262, 2021.

[26] Z. Lončarević, R. Pahič, A. Ude, and A. Gams, “Generalization-based acquisition
of training data for motor primitive learning by neural networks,” Applied Sciences,
vol. 11, no. 3, p. 1013, 2021.

[27] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters, “Robot learning
from randomized simulations: A review,” Frontiers in Robotics and AI, vol. 9, 2022.

References 93

[28] Y. Chebotar, A. Handa, V. Makoviychuk, et al., “Closing the sim-to-real loop:
Adapting simulation randomization with real world experience,” in International
Conference on Robotics and Automation (ICRA), 2019, pp. 8973–8979.

[29] A. Gams, S. A. Mason, A. Ude, S. Schaal, and L. Righetti, “Learning task-specific
dynamics to improve whole-body control,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2018, pp. 280–283.

[30] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality gap: A
survey on sim-to-real transferability of robot controllers in reinforcement learning,”
IEEE Access, vol. 9, pp. 153 171–153 187, 2021.

[31] Z. Lončarević, A. Ude, and A. Gams, “Accelerated robot skill acquisition by re-
inforcement learning-aided sim-to-real domain adaptation,” in 20th International
Conference on Advanced Robotics (ICAR), 2021, pp. 269–274.

[32] R. Pahič, Z. Lončarević, A. Ude, B. Nemec, and A. Gams, “User feedback in la-
tent space robotic skill learning,” in IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids), Nov. 2018, pp. 270–276.

[33] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, pp. 1345–1359, 2010.

[34] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforce-
ment learning for robotics: A survey,” in IEEE Symposium Series on Computational
Intelligence (SSCI), 2020, pp. 737–744.

[35] S. James, P. Wohlhart, M. Kalakrishnan, et al., “Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks,” in Con-
ference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA:
IEEE Computer Society, Jun. 2019, pp. 12 619–12 629.

[36] K. Bousmalis, A. Irpan, P. Wohlhart, et al., “Using simulation and domain adapta-
tion to improve efficiency of deep robotic grasping,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2018, pp. 4243–4250.

[37] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Machine
learning, vol. 84, no. 1–2, pp. 171–203, Jul. 2011.

[38] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A sur-
vey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274,
2013.

[39] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[40] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable reinforce-
ment learning with autoencoders for tactile and visual data,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), Deajeon, Korea, 2016, pp. 3928–
3934.

[41] N. Chen, J. Bayer, S. Urban, and P. van der Smagt, “Efficient movement rep-
resentation by embedding dynamic movement primitives in deep autoencoders,”
in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Seoul,
Korea, 2015, pp. 434–440.

[42] L. Le, A. Patterson, and M. White, “Supervised autoencoders: Improving general-
ization performance with unsupervised regularizers,” in Advances in Neural Infor-
mation Processing Systems 31, Curran Associates, 2018, pp. 107–117.

94 References

[43] N. Chen, M. Karl, and P. V. D. Smagt, “Dynamic movement primitives in latent
space of time-dependent variational autoencoders,” IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), vol. 2, no. 3, pp. 629–636, 2016.

[44] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[45] Z. Lončarević, “Robotic learning in feature space of deep autoencoders,” M.S. thesis,
Jožef Stefan International Postgraduate School, 2019.

[46] Z. Lončarević, M. Simonič, A. Ude, and A. Gams, “Combining reinforcement learn-
ing and lazy learning for faster few-shot transfer learning,” in IEEE-RAS 21st In-
ternational Conference on Humanoid Robots (Humanoids), 2022, pp. 285–290.

[47] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal, “Dynamical move-
ment primitives: Learning attractor models for motor behaviors,” Neural Computa-
tion, vol. 25, no. 2, pp. 328–373, 2013.

[48] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in cartesian space
dynamic movement primitives,” in International Conference on Robotics and Au-
tomation (ICRA), 2014, pp. 2997–3004.

[49] T. Gašpar, B. Nemec, J. Morimoto, and A. Ude, “Skill learning and action recogni-
tion by arc-length dynamic movement primitives,” Robotics and Autonomous Sys-
tems (RAS), vol. 100, pp. 225–235, 2018.

[50] K. L. Moore, “Iterative learning control: An expository overview,” in Applied and
Computational Control, Signals, and Circuits: Volume 1, B. N. Datta, Ed. Boston,
MA: Birkhäuser Boston, 1999, pp. 151–214.

[51] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning,” Control
Systems, vol. 26, pp. 96–114, 2006.

[52] R. Vuga, B. Nemec, and A. Ude, “Speed adaptation for self-improvement of skills
learned from user demonstrations,” Robotica, vol. 34, no. 12, pp. 2806–2822, 2016.

[53] O. Sigaud and F. Stulp, “Policy search in continuous action domains: An overview,”
Neural Networks, vol. 113, pp. 28–40, 2019.

[54] Z. Lončarević, A. Gams, S. Reberšek, et al., “Specifying and optimizing robotic mo-
tion for visual quality inspection,” Robotics and Computer-Integrated Manufacturing
(RCIM), vol. 72, p. 102 200, 2021.

[55] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” in Advances in Neural Information Processing Systems, C. Burges, L.
Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., vol. 26, Curran
Associates, Inc., 2013.

[56] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann, ProDMPs: A
unified perspective on dynamic and probabilistic movement primitives, 2022. arXiv:
2210.01531 [cs.RO].

[57] B. Eysenbach and S. Levine, Maximum entropy RL (provably) solves some robust
RL problems, 2021. doi: 10.48550/ARXIV.2103.06257.

[58] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,”
IEEE Robotics and Automation Magazine, vol. 19, no. 4, pp. 72–82, Dec. 2012.

[59] M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion planning algo-
rithms: An extensible infrastructure for analysis and visualization,” IEEE Robotics
and Automation Magazine, vol. 22, no. 3, pp. 96–102, 2015.

https://arxiv.org/abs/2210.01531
https://doi.org/10.48550/ARXIV.2103.06257

References 95

[60] H. Mir, P. Xu, and P. van Beek, “An extensive empirical evaluation of focus measures
for digital photography,” in Digital Photography X, International Society for Optics
and Photonics, vol. 9023, Spie, 2014, pp. 167–177.

[61] R. Pahič, Z. Lončarević, A. Gams, and A. Ude, “Robot skill learning in latent space
of a deep autoencoder neural network,” Robotics and Autonomous Systems (RAS),
vol. 135, p. 103 690, 2021.

[62] Z. Lončarević, T. Petrič, and A. Gams, “Fitting constrained trajectory with high
variability into redundant robot workspace,” in Advances in Service and Industrial
Robotics, A. Müller and M. Brandstötter, Eds., Springer, Cham: Springer Interna-
tional Publishing, 2022, pp. 167–175.

[63] Z. Lončarević, G. Li, G. Neumann, and A. Gams, “An encoder-decoder architecture
for smooth motion generation,” in Advances in Service and Industrial Robotics, T.
Petrič, A. Ude, and L. Žlajpah, Eds., Cham: Springer Nature Switzerland, 2023,
pp. 358–366.

[64] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. Hobo-
ken, NJ: John Wiley & Sons, 2006.

[65] Creo parametric 7.0, 121 Seaport Blvd Boston, MA 02210, USA: PTC Inc, 2020.

[66] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific generalization of dis-
crete and periodic dynamic movement primitives,” IEEE Transactions on Robotics,
vol. 26, no. 5, pp. 800–815, 2010.

[67] A. Gams, S. Reberšek, B. Nemec, et al., “Robotic learning for increased productiv-
ity: Autonomously improving speed of robotic visual quality inspection,” in IEEE
International Conference on Automation Science and Engineering (CASE), Van-
couver, BC, Canada, 2019, pp. 1275–1281.

[68] Z. Lončarević, R. Pahič, and A. Gams, “Learning of the velocity profile for qual-
ity inspection motion using PoWER,” in 29th International Electrotechnical and
Computer Science Conference, 2020, pp. 156–159.

[69] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the skill of archery
by a humanoid robot iCub,” in IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 2010, pp. 417–423.

[70] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: A Bradford Book, 2018.

[71] T. T. Andersen, “Optimizing the Universal Robots ROS driver,” Technical Univer-
sity of Denmark, Department of Electrical Engineering, Tech. Rep., 2015.

[72] H.-Y. Lin, K.-J. Li, and C.-H. Chang, “Vehicle speed detection from a single motion
blurred image,” Image and Vision Computing, vol. 26, pp. 1327–1337, Oct. 2008.

[73] J. Villalba-Diez, D. Schmidt, R. Gevers, J. Ordieres-Meré, M. Buchwitz, and W.
Wellbrock, “Deep learning for industrial computer vision quality control in the print-
ing Industry 4.0,” Sensors (Basel, Switzerland), vol. 19, no. 18, 2019.

[74] V. Zavrtanik, M. Kristan, and D. Skočaj, “Reconstruction by inpainting for visual
anomaly detection,” Pattern Recognition, vol. 112, p. 107 706, 2021.

[75] H. Choset, K. Lynch, S. Hutchinson, et al., Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, May 2005.

[76] A. Abbadi and R. Matousek, “Path planning implementation using Matlab,” in
International Conference of Technical Computing, Bratislava, Slovakia, Nov. 2014.

96 References

[77] B. Patle, G. L, D. A. Pandey, D. Parhi, and J. Anne, “A review: On path planning
strategies for navigation of mobile robot,” Defence Technology, 2019.

[78] Mehmet Akif AKKUŞ, Cell decomposition, https://user.ceng.metu.edu.tr/
~akifakkus/courses/ceng786/trapezoidalDecomposition.html, Last accessed
on 1.6.2023.

[79] F. Raheem and M. M.Badr, “Development of modified path planning algorithm
using artificial potential field (APF) based on PSO for factors optimization,” Amer-
ican Scientific Research Journal for Engineering, Technology, and Sciences, vol. 37,
pp. 316–328, 2017.

[80] L. Kavraki and J.-. Latombe, “Randomized preprocessing of configuration space
for path planning: Articulated robots,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, 1994, pp. 1764–1771.

[81] J. Lee, O. Kwon, L. Zhang, and S. Yoon, “A selective retraction-based RRT planner
for various environments,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 1002–
1011, 2014.

[82] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,
2011.

[83] A.-M. Zou, Z.-G. Hou, S.-Y. Fu, and M. Tan, “Neural networks for mobile robot
navigation: A survey,” in Advances in Neural Networks, 2006, pp. 1218–1226.

[84] H.-H. Kim, Y.-S. Ha, and G.-G. Jin, “Environmental map building for a mobile robot
using infrared range-finder sensors,” in Advanced Robotics, Nov. 2003, pp. 711–716.

[85] H. M. Barbera, A. G. Skarmeta, M. Z. Izquierdo, and J. B. Blaya, “Neural networks
for sonar and infrared sensors fusion,” in Proceedings of the Third International
Conference on Information Fusion, vol. 2, 2000, WEB4/18–WEB4/25 vol.2.

[86] N. Vlassis, Y. Motomura, and B. Krose, “Supervised dimension reduction of intrin-
sically low-dimensional data,” Neural computation, pp. 191–215, 2002.

[87] S. Dezfoulian, D. Wu, and I. Ahmad, “A generalized neural network approach to
mobile robot navigation and obstacle avoidance,” Advances in Intelligent Systems
and Computing, pp. 25–42, 2013.

[88] Z. Xu, X. Zhou, and S. Li, “Deep recurrent neural networks based obstacle avoidance
control for redundant manipulators,” Frontiers in Neurorobotics, p. 47, 2019.

[89] D. Janglová, “Neural networks in mobile robot motion,” International Journal of
Advanced Robotic Systems, 2004.

[90] C. Kozakiewicz and M. Ejiri, “Neural network approach to path planning for two
dimensional robot motion,” in Proceedings IEEE/RSJ International Workshop on
Intelligent Robots and Systems, 1991, 818–823 vol.2.

[91] M. Bency, A. Qureshi, and M. Yip, “Neural path planning: Fixed time, near-optimal
path generation via oracle imitation,” IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 3965–3972, 2019.

[92] P. Adamu, J. Jegede, H. Okagbue, and P. Oguntunde, “Shortest path planning
algorithm - a particle swarm optimization (PSO) approach,” in Proceedings of the
World Congress on Engineering Vol I, 2018, pp. 19–24.

[93] D. Agarwal and P. S. Bharti, “Matlab simulation of path planning and obstacle
avoidance problem in mobile robot using SA, PSO and FA,” IEEE International
Conference for Innovation in Technology (INOCON), pp. 1–6, 2020.

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng786/trapezoidalDecomposition.html
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng786/trapezoidalDecomposition.html

References 97

[94] M. Dorigo and M. Birattari, “Ant colony optimization,” in Encyclopedia of Machine
Learning, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 36–
39.

[95] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,”
Physica A: Statistical Mechanics and its Applications, 2011.

[96] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable learning
and categorization of analog patterns by an adaptive resonance system,” Neural
Networks, vol. 4, pp. 759–771, 1991.

[97] O. Semenova, A. Semenov, K. Koval, and A. Galka, “The ternary-encoded fuzzy-
neural networks,” in Proceedings of International Conference on Modern Problem of
Radio Engineering, Telecommunications and Computer Science, 2012, pp. 305–305.

[98] Xiaochuan Wang and S. X. Yang, “A neuro-fuzzy approach to obstacle avoidance of a
nonholonomic mobile robot,” in Proceedings IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, vol. 1, 2003, 29–34 vol.1.

[99] P. Malvido Fresnillo, S. Vasudevan, W. M. Mohammed, J. L. Martinez Lastra, and
J. A. Perez Garcia, “Extending the motion planning framework - MoveIt with ad-
vanced manipulation functions for industrial applications,” Robotics and Computer-
Integrated Manufacturing (RCIM), vol. 83, p. 102 559, 2023, issn: 0736-5845.

[100] D. Coleman, I. Sucan, S. Chitta, and N. Correll, Reducing the barrier to entry of
complex robotic software: A MoveIt! case study, 2014. arXiv: 1404.3785 [cs.RO].

[101] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP:
Stochastic trajectory optimization for motion planning,” in IEEE International
Conference on Robotics and Automation (ICRA), 2011, pp. 4569–4574.

[102] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient optimiza-
tion techniques for efficient motion planning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2009, pp. 489–494.

[103] M. Likhachev, Search-based planning library (SBPL), 2016.

[104] Stanford Artificial Intelligence Laboratory et al., Robotic operating system, ver-
sion ROS Melodic Morenia, May 23, 2018. [Online]. Available: https://www.ros.
org.

[105] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces for constrained
sampling-based planning,” International Journal of Robotics Research, vol. 38,
no. 10–11, pp. 1151–1178, Sep. 2019.

[106] B. Cohen, I. A. Şucan, and S. Chitta, “A generic infrastructure for benchmarking
motion planners,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 589–595.

[107] R. D. Párizs, D. Török, T. Ageyeva, and J. G. Kovács, “Machine learning in injection
molding: An Industry 4.0 method of quality prediction,” Sensors, vol. 22, no. 7, 2022,
issn: 1424-8220.

[108] H. Jung, J. Jeon, D. Choi, and J.-Y. Park, “Application of machine learning tech-
niques in injection molding quality prediction: Implications on sustainable manu-
facturing industry,” Sustainability, vol. 13, no. 8, 2021, issn: 2071-1050.

[109] O. Ogorodnyk, O. V. Lyngstad, M. Larsen, K. Wang, and K. Martinsen, “Applica-
tion of machine learning methods for prediction of parts quality in thermoplastics
injection molding,” in Advanced Manufacturing and Automation VIII 8, Springer,
2019, pp. 237–244.

https://arxiv.org/abs/1404.3785
https://www.ros.org
https://www.ros.org

98 References

[110] B. Silva, J. Sousa, and G. Alenya, “Machine learning methods for quality predic-
tion in thermoplastics injection molding,” in International Conference on Electrical,
Computer and Energy Technologies, 2021.

[111] B. Silva, R. Marques, T. Santos, J. Sousa, and G. Alenya, “Relevant parameters
identification in traditional & stretch and blow thermoplastics injection molding,”
in 9th International Conference on Computational Intelligence and Virtual Envi-
ronments for Measurement Systems and Applications, 2022.

[112] B. Silva, J. Sousa, and G. Alenya, “Data acquisition and monitoring system for
legacy injection machines,” in IEEE International Conference on Computational
Intelligence and Virtual Environments for Measurement Systems and Applications,
2021.

[113] Z. Wang, C. Da Cunha, M. Ritou, and B. Furet, “Comparison of K-means and
GMM methods for contextual clustering in HSM,” Procedia Manufacturing, vol. 28,
pp. 154–159, 2019, 7th International conference on Changeable, Agile, Reconfig-
urable and Virtual Production, issn: 2351-9789.

[114] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based RRT to
deal with complex cost spaces,” in IEEE International Conference on Robotics and
Automation (ICRA), 2013, pp. 4120–4125.

[115] Í. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S.
Bøgh, and N. Arana-Arexolaleiba, “A review on reinforcement learning for contact-
rich robotic manipulation tasks,” Robotics and Computer-Integrated Manufacturing
(RCIM), vol. 81, p. 102 517, 2023.

[116] M. Suomalainen, Y. Karayiannidis, and V. Kyrki, “A survey of robot manipulation
in contact,” Robotics and Autonomous Systems (RAS), vol. 156, p. 104 224, 2022.

[117] B. Nemec, R. Vuga, and A. Ude, “Exploiting previous experience to constrain
robot sensorimotor learning,” in IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 2011, pp. 727–732.

[118] T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Journal
of Robotics Research, vol. 4, pp. 3–9, 1985.

[119] N. Hansen, The CMA evolution strategy: A tutorial, 2016. arXiv: 1604 . 00772
[cs.LG].

[120] Z. Lončarević and A. Gams, “Accelerating robot reinforcement learning with ac-
cumulation of knowledge,” in International Conference on Robotics in Alpe-Adria
Danube Region, Springer, 2021, pp. 119–126.

[121] Z. Lončarević, A. Gams, and M. Simonič, “Source domain knowledge acquisition
using simulated environment with minimized computing requirements,” in 31st In-
ternational Electrotechnical and Computer Science Conference, 2022, pp. 228–231.

[122] K. Zaamout and J. Z. Zhang, “Improving neural networks classification through
chaining,” in Artificial Neural Networks and Machine Learning, A. E. P. Villa, W.
Duch, P. Érdi, F. Masulli, and G. Palm, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 288–295.

[123] M. Volpp, F. Flürenbrock, L. Grossberger, C. Daniel, and G. Neumann, “Bayesian
context aggregation for neural processes,” in International Conference on Learning
Representations, 2021.

https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772

99

Bibliography

Publications Related to the Thesis

Journal Articles

 Zvezdan Lončarević, Andrej Gams, Simon Reberšek, Bojan Nemec, Jure Škrabar,
Jure Skvarč, and Aleš Ude. Specifying and optimizing robotic motion for visual qual-
ity inspection. Robotics and Computer-Integrated Manufacturing, 72:102200, 2021

 Rok Pahič, Zvezdan Lončarević, Andrej Gams, and Aleš Ude. Robot skill learning
in latent space of a deep autoencoder neural network. Robotics and Autonomous
Systems, 135:103690, 2021

Conference Paper

 Zvezdan Lončarević, Ge Li, Gerhard Neumann, and Andrej Gams. An encoder-
decoder architecture for smooth motion generation. In Tadej Petrič, Aleš Ude, and
Leon Žlajpah, editors, Advances in Service and Industrial Robotics, pages 358–366,
Cham, 2023. Springer Nature Switzerland

 Zvezdan Lončarević, Simon Reberšek, Aleš Ude, and Andrej Gams. Randomized
robotic visual quality inspection with in-hand camera. In Ivan Petrovic, Emanuele
Menegatti, and Ivan Marković, editors, Intelligent Autonomous Systems 17, pages
483–494, Cham, 2023. Springer Nature Switzerland

 Zvezdan Lončarević, Tadej Petrič, and Andrej Gams. Fitting constrained trajectory
with high variability into redundant robot workspace. In Andreas Müller and Mathias
Brandstötter, editors, Advances in Service and Industrial Robotics, pages 167–175,
Cham, 2022. Springer International Publishing

 Zvezdan Lončarević, Mihael Simonič, Aleš Ude, and Andrej Gams. Combining re-
inforcement learning and lazy learning for faster few-shot transfer learning. In 21st
International Conference on Humanoid Robots (Humanoids), pages 285–290, 2022

 Zvezdan Lončarević, Andrej Gams, and Mihael Simonič. Source domain knowledge
acquisition using simulated environment with minimized computing requirements. In
31st International Electrotechnical and Computer Science Conference, pages 228–231,
2022

 Zvezdan Lončarević, Aleš Ude, and Andrej Gams. Accelerated robot skill acquisition
by reinforcement learning-aided sim-to-real domain adaptation. In 20th International
Conference on Advanced Robotics (ICAR), pages 269–274, 2021

 Zvezdan Lončarević and Andrej Gams. Accelerating robot reinforcement learning
with accumulation of knowledge. In International Conference on Robotics in Alpe-
Adria Danube Region, pages 119–126. Springer, 2021

100 Bibliography

 Zvezdan Lončarević, Rok Pahič, and Andrej Gams. Learning of the velocity profile
for quality inspection motion using PoWER. In 29th International Electrotechnical
and Computer Science Conference, pages 156–159, 2020

 Zvezdan Lončarević, Rok Pahič, Mihael Simonič, Aleš Ude, and Andrej Gams. Re-
duction of trajectory encoding data using a deep autoencoder network: robotic throw-
ing. In International Conference on Robotics in Alpe-Adria Danube Region, pages
86–94. Springer, 2019

 Rok Pahič, Zvezdan Lončarević, Aleš Ude, Bojan Nemec, Andrej Gams, et al. User
feedback in latent space robotic skill learning. In 18th International Conference on
Humanoid Robots (Humanoids), pages 270–276. IEEE, 2018

Other Publications

Journal Articles

 Zvezdan Lončarević, Rok Pahič, Aleš Ude, and Andrej Gams. Generalization-based
acquisition of training data for motor primitive learning by neural networks. Applied
Sciences, 11(3):1013, 2021

Conference Paper

 Zvezdan Lončarević and Andrej Gams. Using neural networks for synthesizing im-
portance sampler database in reinforcement learning. In 30th International Elec-
trotechnical and Computer Science Conference, pages 179–182, 2021

 Zvezdan Lončarević, Rok Pahič, Mihael Simonič, Aleš Ude, and Andrej Gams. Gen-
eralization based database acquisition for robot learning in reduced space. In In-
ternational Conference on Robotics in Alpe-Adria Danube Region, pages 496–504.
Springer, 2020

 Zvezdan Lončarević, Rok Pahič, Gregor Papa, and Andrej Gams. Experimental
evaluation of deep-learning applied on pendulum balancing. In 28th International
Electrotechnical and Computer Science Conference, pages 219–222, 2019

 Zvezdan Lončarević, Mihael Simonič, Aleš Ude, Andrej Gams, et al. Learning of
robotic throwing at a target using a qualitative learning reward. In EUROCON
2019-18th International Conference on Smart Technologies, pages 1–6., 2019

 Zvezdan Lončarević, Rok Pahič, Aleš Ude, Bojan Nemec, and Andrej Gams. Replac-
ing reward function with user feedback. In 27th International Electrotechnical and
Computer Science Conference, pages 139–142, 2018

 Zvezdan Lončarević and Andrej Gams. Skill adaptation using transfer learning. In
14th Jožef Stefan International Postgraduate School Students’ Conference, page 62,
2022

 Zvezdan Lončarević and Andrej Gams. Generation of a priori knowledge for reinforce-
ment learning using neural networks. In 13th Jožef Stefan International Postgraduate
School Students’ Conference and 15th Young Researchers’ Day of Chemistry, mate-
rial science, biochemistry and environment, page 46, 2021

101

 Zvezdan Lončarević and Andrej Gams. Robotic camera motion optimization for
minimal image quality degradation. In 12th Jožef Stefan International Postgraduate
School Students’ Conference and 14th Young Researchers’ Day, page 35, 2020

 Zvezdan Lončarević, Rok Pahič, Mihael Simonič, and Andrej Gams. Human intu-
itive reward systems for reinforcement learning of robotic actions in latent space of
deep auto encoder network. In 11th Jožef Stefan International Postgraduate School
Students’ Conference and 13th Young Researchers’ Day, page 45, 2019

103

Biography

Education

1.10.2017 - 7.10.2019: M.Sc. in Information and Communication Technologies
Jožef Stefan International Postgraduate School
Final Average grade 9.75
Thesis Title: “Robotic Learning in Feature Space of Deep Autoencoders”
1.10.2013 - 13.7.2017: B.Sc. in Mechatronics
Faculty of Technical Science, University of Novi Sad
Final Average grade 9.28
Thesis Title: “Analysis of Lateral Dynamics of Vehicle”

Conferences

June 2023: Attended with a contribution (article and oral presentation) at the “32nd In-
ternational Conference on Robotics in Alpe-Adria-Danube Region”, Bled, Slovenia – Title
of the presentation: “An Encoder-Decoder Architecture for Smooth Motion Generation”
June 2022: Attended with a contribution (article and oral presentation) at the “31st In-
ternational Conference on Robotics in Alpe-Adria-Danube Region”, Klagenfurt, Austria –
Title of the presentation: “Fitting constrained trajectory with high variability into redun-
dant robot workspace”
June 2022: Attended with a contribution (abstract, poster, elevator pitch) at the “14th
Jožef Stefan International Postgraduate School Students’ Conference”, Kamnik, Slovenia –
Title of the presentation: “Skill adaptation using transfer learning”
December 2021: Attended with a contribution (article and oral presentation) at the
“20th International Conference on Advanced Robotics”, Ljubljana, Slovenia – Title of the
presentation: “Accelerated robot skill acquisition by reinforcement learning-aided sim-to-
real domain adaptation”
September 2021: Attended with a contribution (article and oral presentation) at the
“30th International Electrotechnical and Computer Science Conference”, Portorož, Slove-
nia – Title of the presentation: “Using neural networks for synthesizing importance sampler
database in reinforcement learning”
June 2021: Attended with a contribution (article and oral presentation) at the “30th
International Conference on Robotics in Alpe-Adria-Danube Region”, Poitiers, France – Ti-
tle of the presentation: “Accelerating robot reinforcement learning with accumulation of
knowledge”
May 2021: Attended with a contribution (abstract, poster, elevator pitch) at the “13th
Jožef Stefan International Postgraduate School Students’ Conference” and “15th Young Re-
searchers’ Day of Chemistry, material science, biochemistry and environment”, Ljubljana,
Slovenia – Title of the presentation: “Generation of a priori knowledge for reinforcement
learning using neural networks”

104 Biography

September 2020: Attended with a contribution (article and oral presentation) at the
“29th International Electrotechnical and Computer Science Conference”, Portorož, Slove-
nia – Title of the presentation: “Learning of the velocity profile for quality inspection
motion using PoWER”
September 2019: Attended with a contribution (article and oral presentation) at the
“28th International Electrotechnical and Computer Science Conference”, Portorož, Slovenia
– Title of the presentation: “Experimental evaluation of deep-learning applied on pendu-
lum balancing”
June 2019: Attended with a contribution (article and oral presentation) at the “28th
International Conference on Robotics in Alpe-Adria-Danube Region”, Kaiserslautern, Ger-
many – Title of the presentation: Reduction of trajectory encoding data using a deep
autoencoder network: robotic throwing
April 2019: Attended with a contribution (abstract, poster, elevator pitch) at the “11th
Jožef Stefan International Postgraduate School Students’ Conference” and “13th CMBE
day”, Planica, Slovenia – Title of the presentation: “Human intuitive reward systems for
reinforcement learning of robotic actions in latent space of deep autoencoder network”
September 2018: Attended with a contribution (article and oral presentation) at the
“27th International Electrotechnical and Computer Science Conference”, Portorož, Slove-
nia – Title of the presentation: “Replacing reward function with user feedback”

Research Visits

August 2022 – January 2023 (6 months): Exchange to German Karlsruhe Insti-
tute of Technology (Autonomous learning robots laboratory) funded by German Academic
Exchange Programme (DAAD)

Memberships

October 2021 - September 2022: Jožef Stefan International Postgraduate School stu-
dent council member

105

Permissions

This thesis contains text excerpts and figures from conference papers and journal articles
published during the doctoral studies.

The journal articles [54], [61] are licensed under a Creative Commons Attribution 4.0 In-
ternational License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Permission to reuse conference papers [31], [32], [46], [68], [121] was obtained from
IEEE. In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of Jožef Stefan International Postgraduate School’s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.
ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

Conference papers [18], [62], [63], [120] are reused with permission from Springer Na-
ture. Springer Nature Book and Journal Authors have the right to reuse the Version of
Record, in whole or in part, in their own thesis. Additionally, they may reproduce and
make available their thesis, including Springer Nature content, as required by their award-
ing academic institution. More information is available on https://www.springer.com/
gp/rights-permissions/obtaining-permissions/882.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Autonomous Generation of Robot Behaviour
	1.1.1 Trajectory optimization for higher productivity
	1.1.2 Adaptive process behaviour
	1.1.3 Dynamic task and process behaviour generation

	1.2 Review of the Relevant Scientific Field
	1.3 Hypothesis
	1.4 Contribution of the Thesis

	2 Trajectory Optimization for Higher Productivity
	2.1 Methodology
	2.1.1 Image quality measures
	2.1.2 Specification of motion trajectories for visual quality inspection
	2.1.3 Optimization objective
	2.1.4 Optimizing the speed of motion by iterative learning control (ILC)
	2.1.5 Speed profile refinement by reinforcement learning (RL)

	2.2 Experimental Evaluation and Results
	2.2.1 Experimental setup
	2.2.2 Specification of trajectories
	2.2.3 Performance of speed optimization
	2.2.4 Comparison to other methods

	2.3 Discussion

	3 Adaptive Process Behaviour
	3.1 Methodology
	3.1.1 Planners
	3.1.2 Evaluation of motion planners
	3.1.3 High level decision making for planning

	3.2 Experimental Evaluation and Results
	3.2.1 Experimental setup
	3.2.2 Motion planner evaluation
	3.2.3 Decision making

	3.3 Discussion

	4 Dynamic Task and Process Behaviour Generation
	4.1 Methodology
	4.1.1 Trajectory acquisition and encoding
	4.1.2 Storing the knowledge in neural network
	4.1.3 Adaptation of knowledge to target environment

	4.2 Experimental Evaluation and Results
	4.2.1 Experimental setup
	4.2.2 Transfer learning evaluation

	4.3 Probabilistic Approaches for Storing the Knowledge
	4.3.1 Methodology
	4.3.2 Experimental protocol and results

	4.4 Discussion

	5 Discussion and Outlook
	6 General Summary and Conclusions
	References
	Bibliography
	Biography
	Permissions

