Učni načrt predmeta

Predmet:
Sodobne tehnologije vodenja sistemov
Course:
Modern Control Technologies
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 2. stopnja Digitalna transformacija 1 2
Information and Communication Technologies, 2nd cycle Digital Transformation 1 2
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
IKT2-616
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Đani Juričić
Sodelavci / Lecturers:
doc. dr. Damir Vrančić
Jeziki / Languages:
Predavanja / Lectures:
slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študijski program prve stopnje s področja naravoslovja, tehnike ali računalništva.

Student must complete first-cycle study programmes in natural sciences, technical disciplines or computer science.

Vsebina:
Content (Syllabus outline):

1) Uvod
Osnove življenjskega cikla sistemov vodenja: faze tehnične izvedbe; definiranje funkcionalnih zahtev (kaj naj sistem dela), specificiranje, načrtovanje, implementacija in vzdrževanje; ne-tehnični vidiki (vmesnik človek-stroj, tehnoekonomika, socialni vidiki).

2) Osnovni gradniki sodobnih tehnologij vodenja
Osnove senzorjev in aktuatorjev, priprava in prenos signalov; vzorčenje.

3) Sodobni koncepti načrtovanja vodenja v časovnem prostoru
Temeljni koncepti: stabilnost, vodljivost,
spoznavnost; optimalni regulator stanj;
samonastavljivi in adaptivni regulatorji; primeri iz
industrije.

4) Inteligentni nadzorni sistemi
Pomen zanesljivosti, učinkovitosti in kvalitete v
industriji; postopki zgodnjega zaznavanja napak
na podlagi modela; uporaba metod procesiranja
signalov; lokalizacija napak s pomočjo
aproksimativnega sklepanja; primeri industrijskih
aplikacij.

5) Ocenjevanje stanj dinamičnih sistemov
Praktični pomen ocenjevanja stanj dinamičnih
sistemov; Kalmanov filter; razširjeni Kalmanov
filter; “bootstrap” postopki za ocenjevanje stanj
nelinearnih dinamičnih sistemov; primeri
uporabe pri napovedovanju in navigaciji.

6) Prediktivno vodenje
Osnovni koncepti; rešitev kvadratične kriterijske
funkcije; nastavljanje; robustnost; primer
industrijske uporabe.

1) Introduction
Life-cycle basics: technical implementation phases, the analysis of functional requirements (what the system should do), specification, design, implementation and maintenance; non-technical aspects (man-machine interface, technoeconomics, social aspects).

2) Basic building blocks of state-of-the-art control technologies
Review of sensors, actuators, signal conditioning and transmission; sampling.

3) Modern concepts of control design in
time space Basic concepts: controllability; identifiability; optimal state regulator; self-adjusting and adaptive regulators; examples from industry.

4) Intelligent supervisory systems
Reliability, efficiency and quality requirements;
early error detection procedures based on
models; application of signal processing
methods; fault isolation by using approximate
reasoning; examples of industrial applications.

5) Model based control
Practical relevance of state estimation of dynamic systems; Kalman filter; extended Kalman filter; "bootstrap" procedures for state estimation of nonlinear dynamic systems; examples of application in forecasting and navigation; predictive control.

6) Predictive control
Basic concepts; solution of the quadratic cost function; tuning; robustness; application.

Temeljna literatura in viri / Readings:

- S. Strmčnik, Đ. Juričić (Ed’s) (2013), Case Studies in Control: Putting Theory to Work. Springer, London.
- J. Clempner, Y. Wen (Eds.) (2018).New Perspectives and Applications of Modern Control Theory.
Springer. London.
- K. Ogata (2010). Modern Control Engineering, Prentice Hall, Boston.
- T. Samad, A. Annaswamy (2014). The Impact of Control Technology. IEEE Control Systems Society
(available at http://ieeecss.org/general/IoCT2-report).
- J. Lu, X. Yu, G. Chen, W. Yu (Eds.) (2016). Complex Systems and Networks Dynamics, Controls and
Applications. Springer, London.

- S. Yin, X. Li, H. Gao, O. Kaynak (2015). Data-based techniques focused on modern industry: an
overview. IEEE Transactions on Industrial Electronics, Vol. 62, No. 1, 657-667

- D. Šiljak (2012). Decentralized Control of Complex Systems. Dover Publications, New York.

- S. Sarka (2013). Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge.

- N.-H. Kim, D. An, J.-H. Choi (2016). Prognostics and Health Management of Engineering Systems: An
Introduction. Springer, London.""

Cilji in kompetence:
Objectives and competences:

Vodenje je "skrita" tehnologija, ki zagotavlja
učinkovito in varno delovanje sistemov v skladu z
zahtevami.

Cilj predmeta je seznaniti slušatelje z osnovnimi
koncepti ter predstaviti nekaj sodobnih
postopkov za reševanje zahtevnejših problemov
vodenja.

Okvir za razumevanje tehnologije vodenja
predstavlja model življenjskega cikla, ki na
strnjen način povezuje praktične zahteve,
načrtovanje in implementacijo.

Nekoliko več poudarka je na postopkih za
načrtovanje samonastavljivih in adaptivnih
sistemov, sistemov nelinearnega vodenja in
sistemov nadzora. Pri tem bodo uporabljeni
konkretni praktični zgledi za ponazoritev osnovnih idej.

Študent bo sposoben analizirati dinamiko sistema, načrtati sistem optimalnega vodenja in
načrtovanja virtualnih senzorjev.

Control is a "hidden" technology which ensures
efficient and safe operation of systems in
accordance with the requirements.

The aim of the course is to acquiaint students with basic concepts and to present a number of state-of- the-art procedures for solving complex control problems.

The course will provide a framework for
understanding control technology in the form of a life cycle model which interconnects practical
requirements, design and implementation in a
concise manner.

Procedures for planning self-adjusting and
adaptive systems, non-linear control systems and
supervision systems will be presented in greater
detail. Practical examples highlighting the basic
concepts will be provided as well.

The student will be able to analyze the dynamics
of the system, plan a system of optimal management, and plan virtual sensors.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študenti bodo z uspešno opravljenimi obveznostmi tega predmeta pridobili:
- razumevanje procesa načrtovanja
sistemov vodenja,
- razumevanje temeljnih konceptov vodenja,
- sposobnost povezovanja sistemskih
znanj in matematičnih orodij pri formulacji problema vodenja realnih sistemov,
- sposobnost uporabe teoretičnih znanj v praksi,
- delo v multidisciplinarnih skupinah,
- dokumentiranje in diseminacija rezultatov
dela na mednarodnem nivoju,
- sposobnost reševanja zahtevnejših problemov
vodenja,
- razumevanje (nelinearne) dinamike sistemov,
- poznavanje tehnološke podlage za implementacijo sodobnih sistemov vodenja.

Students successfully completing this course will
acquire:
- understanding of the process of control
system design,
- understanding of the fundamental control concepts,
- the ability to combine knowledge of systems
and mathematical tools in formulating the
problem of control of real systems,
- the ability to apply theoretical knowledge in practice,
- co-operation in multi-disciplinary teams,
- documentation and dissemination of results on the international level,
- ability to solve non-trivial control problems,
- understanding the (nonlinear) systems
dynamics,
- familiarity with technologies for implementation of modern control systems.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminarji, laboratorijsko delo

Lectures, seminar work, laboratory work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminar
50 %
Seminar
Ustni izpit
50 %
Oral exam
Reference nosilca / Lecturer's references:
1. STEFANOVSKI, Jovan, JURIČIĆ, Đani. Fault-tolerant control in presence of disturbances based on fault estimation. Systems & Control Letters. [Print ed.]. 2020, vol. 138, str. 104646-1-104646-10. ISSN 0167-6911
2. KÖNIGSHOFER, Benjamin, HÖBER, Michael, NUSEV, Gjorgji, BOŠKOSKI, Pavle, JURIČIĆ, Đani, MARGARITIS, Nikolaos, HOCHENAUER, Christoph, SUBOTIĆ, Vanja. Towards strategies to mitigate degradation and regenerate performance of a solid oxide electrolyzer during co-electrolysis operation. Journal of power sources. 1 Feb. 2023, vol. 556, str. 1-13, ilustr. ISSN 1873-2755
3. KÖNIGSHOFER, Benjamin, BOŠKOSKI, Pavle, NUSEV, Gjorgji, KOROSCHETZ, Markus, HOCHFELLNER, Martin, SCHWAIGER, Marcel, JURIČIĆ, Đani, HOCHENAUER, Christoph, SUBOTIĆ, Vanja. Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant. Applied energy. 2021, vol. 283, str. 116372-1-116372-18. ISSN 0306-2619
4. ŽNIDARIČ, Luka, NUSEV, Gjorgji, MOREL, Bertrand, MOUGIN, Julie, JURIČIĆ, Đani, BOŠKOSKI, Pavle. Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells. Applied energy. 2021, vol. 298, str. 117101-1-117101-14. ISSN 0306-2619
5. KÖNIGSHOFER, Benjamin, HÖBER, Michael, BOŠKOSKI, Pavle, NUSEV, Gjorgji, JURIČIĆ, Đani, HOCHENAUER, Christoph, SUBOTIĆ, Vanja. Performance investigation and optimization of an SOEC stack operated under industrially relevant conditions. ECS transactions. 2021, vol. 103, no. 1, str. 519-528. ISSN 1938-5862