Učni načrt predmeta

Predmet:
Vakuumistika
Course:
Vacuum Science and Technology
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 3. stopnja / 1 1
Nanosciences and Nanotechnologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO3-839
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Janez Kovač
Sodelavci / Lecturers:
prof. dr. Miran Mozetič
Jeziki / Languages:
Predavanja / Lectures:
Slovenski ali angleški / Slovene or English
Vaje / Tutorial:
Angleški / English
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje naravoslovne ali tehniške smeri ali zaključen študij drugih smeri z dokazanim poznavanjem osnov področja predmeta (pisna dokazila, pogovor).

Completed second-cycle studies in natural sciences or engineering or completed second-cycle studies in other fields with proven knowledge of fundamentals in the field of this course (certificates, interview).

Vsebina:
Content (Syllabus outline):

Fizikalne osnove, izrazoslovje, merilne enote in definicije v vakuumski tehniki in tehnologiji

Priprava vakuuma: črpanje plinov, vakuumske črpalke, hitrost črpanja, vrste pretokov plinov

Fizikalno-kemijski procesi na površinah materialov: desorpcija, adsorpcija, sorpcija, segregacija, difuzija, permeacija, razplinjanje materialov

Meritve vakuuma od 1000 mbar do 10-12 mbar, izbira merilnikov tlaka, principi meritev, analiza preostalih plinov z masno spektrometrijo, detekcija puščanja, hitrost puščanja

Vakuumske komponente, sistemi in materiali:
načrtovanje vakuumskega sistema glede na
področje vakuuma; izbira materialov in
komponent

Metode za analizo površin, ki delujejo v ultravisokem vakuumu: rentgenska fotoelektronska spektroskopija (XPS), masna spektrometrija sekundarnih ionov (SIMS), spektroskopija Augerjevih elektronov (AES): fizikalni principi, analizna globina, lateralna ločljivost, občutljivost metod, kvantitativna obdelava podatkov, profilna analiza tankih plasti

Nizkotlačne in atmosferske plazme: termodinamsko neravnovesno stanje plinov,
uporaba plazme za čiščenje, aktivacijo,
funkcionalizacijo in selektivno jedkanje površin

Vakuumska tehnika v inženirstvu površin za
izboljšanje lastnosti površin: priprava in obdelava
površin, nanos PVD in CVD prevlek

Vakuumske tehnologije v metalurgiji, kemijski,
farmacevtski, prehrambni industriji, elektroniki in
elektrooptiki

Introduction in vacuum physics, basic terms, units of measurement, definitions in vacuum techniques and technology

Vacuum generation: pumping of gases, vacuum pumps, pumping speed, types of gas flow

Physical-chemical processes at the surfaces of materials: desorption, absorption, sorption, segregation, diffusion, permeation, outgassing

Vacuum measurement in the range from 1000 mbar to 10-12 mbar, selection of vacuum gauges, analysis of residual gases using mass spectrometry, detection of leaks, leak rate.

Vacuum components, systems and materials, design of vacuum systems for different ranges, selection of materials and components

Surface analytical techniques based on ultrahigh
vacuum: X-ray photoelectron spectroscopy (XPS),
Secondary ion mass spectroscopy (SIMS), Auger
electron spectroscopy (AES), physical principles,
sampling depth, spatial resolution, sensitivity,
quantification, data processing, depth profiling of
thin films

Low pressure and atmospheric plasmas: thermodynamically non-equilibrium state of gas,
applications for cleaning, surface activation, surface functionalization and selective etching

Vacuum techniques in surface engineering: to
improve performance of materials: surface
preparation and treatment, deposition of PVD and CVD coatings

Vacuum technologies in metallurgy, pharmaceutic and food industry, electronics and optoelectronics

Temeljna literatura in viri / Readings:

Izbrana poglavja iz naslednjih knjig in virov: / Selected chapters from the following books:
- V. Nemanič (urednik): Vakuumska znanost in tehnika, Društvo za vakuumsko tehniko Slovenije,
Ljubljana, 2003.
- Pedagoški material pri Mednarodni zvezi za vakuumsko znanost, tehniko in aplikacije – IUVSTA:
http://www.iuvsta-us.org/iuvsta2/index.php?id=2072, urednik M. Mozetič, 2013.
- Vacuum Technology Book, Volume II, Pfeiffer Vacuum GmbH, 2018, https://www.pfeiffervacuum.com/en/info-center/vacuum-technology-book/.
- J. Gasperič: Nasveti za uporabnike vakuumske tehnike, Društvo za vakuumsko tehniko Slovenije,
Ljubljana, 2002.
- P. Panjan, M. Čekada, Zaščita orodij s trdimi PVD-prevlekami, Institut »Jožef Stefan«, 2005
- J. M. Lafferty (editor): Foundations of Vacuum Science and Technique, John Wiley and Sons, Inc., New
York, (1998).
- M. Wutz, H. Adam, W. Walcher: Theory and Practice of Vacuum Technology, Third Edition Friedr.
Vieweg and Son. Braunschweig, (1989).
- S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Material Science, Springer-Verlag Berlin
Heidelberg, 2013.
- D. Briggs, J. T. Grant (eds.): Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, IM
Publications, Chichester, 2003.
- M. Thomas, K. L. Mittal (eds.), Atmospheric Pressure Plasma Treatment of Polymers, John Wiley and
Sons and Scrivener Publishing LLC, Salem, Massachusetts, 2013.
- Marija Gorjanc, Miran Mozetič: Modification of fibrous polymers by gaseous plasma: principles,
techniques and applications. Saarbrücken: LAP Lambert Academic Publishing, 2014.

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je, da študenti spoznajo in razumejo osnove vakuumske tehnike in tehnologije, na nekaterih področjih pa znajo aktivno uporabljati dobljena znanja in reševati probleme.

Študenti bodo zmožni uporabljati znanje o pripravi in merjenju vakuuma, vakuumskih komponentah, načrtovanju in izgradnji vakuumskega sistema, o detekciji puščanja in o vakuumskih materialih.

Študenti bodo spoznali pripravo tankih plasti iz parne faze v vakuumu in obdelavo materialov s plinsko plazmo.

Študenti bodo razumeli fizikalno-kemijske osnove o reaktivni plazmi, kot so čiščenje, aktivacija, funkcionalizacija površin ter selektivno jedkanje.

Študenti bodo zmožni uporabljati moderne analizne metode za preiskavo površin in tankih
plasti, ki temeljijo na vakuumu. Zmožni bodo primerjalne analize dobljenih podatkov in
reševanja problemov, povezanih s površinami materialov.

Students will gain knowledge on fundamentals of
vacuum techniques and technology. On some topics they will be able to use this knowledge actively and solve the problems.

The students will be able to use a knowledge on
vacuum generation, vacuum measurement, vacuum components, design and realization of vacuum systems, detection of leaks and use of vacuum materials.

Students will get knowledge about physical vapour deposition of thin films and plasma treatment of surfaces.

Students will understand physical and chemical
properties of reactive plasmas for treatments of like cleaning, surface activation, surface
functionalization and selective etching.

Students will be able to use surface analytical
methods based on vacuum. They will be able to
choose the most suitable method, evaluate and
compare the obtained results and solve the
problems related to materials surfaces.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študenti bodo razumeli procese, ki potekajo v
vakuumskem okolju.

Študenti bodo sposobni uporabiti osnovne
parametre za opis vakuumskega sistema.

Študenti bodo sposobni načrtovati, izbrati primerni material in komponente ter sestaviti vakuumski sistem.

Študenti bodo sposobni prepoznati procese na
površinah sten vakuumskih posod.

Študenti bodo spoznali različne vakuumske
tehnologije, ki so najbolj pogosto uporabljene v
industriji in izbrati najbolj primerno za specifični
problem.

Študenti bodo znali izbrati primerno metodo za
karakterizacijo površin, tankih plasti in vakuumske atmosfere, uporabiti to metodo in ovrednotiti rezultate teh metod.

Študenti bodo razumeli osnove plazemskih
interakcij, znali bodo izbrati primerno plazemsko
obdelavo za modifikacijo površin, jo uporabiti in
ovrednotiti rezultate.

The students will understand the basic physical
processes in the vacuum ambient.

Students will be able to use basic parameters to
describe the vacuum systems.

Students will be able to design, choose the suitable material and components and integrate the vacuum system.

Students will be able to identify processes on the
surfaces of the walls inside of the vacuum vessels.
Students will learn about different vacuum technologies most often applied in different
industrial fields and choose the most suitable
technology for specific problem.

Students will be able to choose the proper analytical method for characterization of surfaces, thin films and vacuum atmosphere, to use this method and evaluate the results.

Students will understand basic plasma interactions, choose the proper plasma treatment for surface modification, apply it and evaluate results.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, konzultacije, seminarji, laboratorijsko delo

Lectures, consultations, seminar work, laboratory work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Ustni izpit
50 %
Oral exam
Seminarska naloga
25 %
Seminar work
Zagovor seminarske naloge, pri katerem dokaže osvojitev vseh študijskih izidov z vsaj po enim konkretnim primerom
25 %
Defense of the seminar work where the student demonstrates the achievement of all learning outcomes with at least one specific case for each outcome
Reference nosilca / Lecturer's references:
1. Kovač, J.; Ekar, J.; Čekada, M.; Zajíčková, L.; Nečas, D.; Blahová, L.; Yong Wang, J.; Mozetič, M., Depth profiling of thin plasma-polymerized amine films using GDOES in an Ar-O2 plasma. Applied Surface Science 2022, 581, 152292
2. Ekar, J.; Panjan, P.; Drev, S.; Kovač, J., ToF-SIMS Depth Profiling of Metal, Metal Oxide, and Alloy Multilayers in Atmospheres of H2, C2H2, CO, and O2. Journal of the American Society for Mass Spectrometry 2022, 33 (1), 31-44.
3. Pirker, L.; Krajnc, A. P.; Malec, J.; Radulović, V.; Gradišek, A.; Jelen, A.; Remškar, M.; Mekjavić, I. B.; Kovač, J.; Mozetič, M.; Snoj, L., Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation. Journal of Membrane Science 2021, 619, 118756.
4. Kamal, K. M.; Narayan, R.; Chandran, N.; Popović, S.; Nazrulla, M. A.; Kovač, J.; Vrtovec, N.; Bele, M.; Hodnik, N.; Kržmanc, M. M.; Likozar, B., Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production. Applied Catalysis B: Environmental 2022, 307, 121181.
5. Nemanič, V.; Žumer, M.; Kovač, J., Hydrogen permeability of AISI 316 ITER grade stainless steel. Journal of Nuclear Materials 2019, 521, 38-44.