Učni načrt predmeta

Predmet:
Strojno učenje
Course:
Machine Learning
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 3. stopnja Tehnologije znanja 1 1
Information and Communication Technologies, 3rd cycle Knowledge Technologies 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
IKT3-915
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
doc. dr. Martin Žnidaršič
Sodelavci / Lecturers:
prof. dr. Nada Lavrač , dr. Aljaž Osojnik , doc. dr. Bernard Ženko
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje s področja informacijskih ali komunikacijskih tehnologij ali zaključen študij druge stopnje na drugih področjih z znanjem osnov s področja predmeta. Potrebna so tudi osnovna znanja matematike, računalništva in informatike.

Completed second cycle studies in information or communication technologies or completed second cycle studies in other fields with knowledge of fundamentals in the field of this course. Basic knowledge of mathematics, computer science and informatics is also requested.

Vsebina:
Content (Syllabus outline):

• Uvod v strojno učenje: osnovne in napredne naloge strojnega učenja, metodologija odkrivanja zakonitosti v podatkih.
• Tehnike strojnega učenja: naivni Bayesov klasifikator, učenje odločitvenih, regresijskih in modelnih dreves, učenje klasifikacijskih in povezovalnih pravil, odkrivanje podskupin, relacijsko učenje, razvrščanje v skupine,
metoda najbližjih sosedov, napovedno razvrščanje, delno nadzorovano učenje, učenje predstavitev, logistična regresija, metoda podpornih vektorjev, umetne nevronske mreže, globoko učenje, ansambli klasifikatorjev, aktivno učenje, razumljiva umetna inteligenca.
• Ocenjevanje rezultatov: mere in postopki za ocenjevanje kvalitete naučenih vzorcev in modelov, metodologija vrednotenja rezultatov.
• Praktično usposabljanje: praktična uporaba izbranih tehnik in orodij strojnega učenja.

• Introduction to machine learning: elementary and advanced machine learning tasks, knowledge discovery from data methodology.
• Machine learning techniques: Naive Bayesian classifier, decision, regression and model tree learning, learning classification and association
rules, subgroup discovery, relational learning, clustering, nearest neighbors approach, predictive clustering, semi-supervised learning,
representation learning, logistic regression, support vector machines, artificial neural networks, deep learning, ensemble classifiers, active learning,
explainable artificial intelligence.
• ML results evaluation: measures and procedures for estimating the quality of induced patterns and models, methodology for results evaluation.
• Practical training: practical use of selected machine learning techniques and tools.

Temeljna literatura in viri / Readings:

Izbrana poglavja iz naslednjih knjig: / Selected chapters from the following books:
• G. James, D. Witten, T. Hastie, and R. Tibshirani (1st Edition 2013, 2nd Edition 2021) An Introduction to Statistical Learning: with Applications in R. Springer, New York (available at https://statlearning.com/), ISBN-10: 1071614177, ISBN-13: 978-1071614174.
• J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of Rule Learning. Springer, 2012. ISBN 978-3-540-75196-0.
• C.C. Aggarwal. Data mining: The textbook, Springer, 2015. ISBN 978-3-319-14141-1.
• N. Lavrač N, V. Podpečan, and M. Robnik-Šikonja (2021) Representation Learning: Propositionalization and Embeddings. Springer, Berlin. ISBN: 978-3-030-68817-2.
• J. Witten, E. Frank, M.A. Hall, C.J. Pal: Data Mining: Practical Machine Learning Tools and Techniques , 4th Edition, 2017. ISBN 978-012804291-5.
• M. Bramer, (2020). Principles of data mining. Springer, ISBN 978-1-4471-7493-6.

Cilji in kompetence:
Objectives and competences:

Strojno učenje je najpomembnejše področje umetne inteligence, katerega cilj je avtomatska konstrukcija klasifikacijskih modelov in odkrivanje vzorcev v podatkih.

Cilji predmeta so predstaviti osnovne in napredne tehnike strojnega učenja ter metodologijo za ocenjevanja rezultatov strojnega učenja.

Študenti bodo obvladali osnovne in napredne tehnike strojnega učenja in bodo usposobljeni za praktično uporabo izbranih orodij strojnega učenja
in metod za evalvacijo rezultatov.

Machine learning is the most important area of artificial intelligence, whose goal is automated construction of classification models and pattern
discovery from data.

The course objectives are to present the basic and advanced machine learning techniques, and the methodology for machine learning results
evaluation.

The students will master the basic and advanced machine learning techniques, and will be capable of using selected machine learning tools and results evaluation methods in practice.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Obvladana uporaba izbranih metod in tehnik strojnega učenja, usposobljenost za praktično uporabo izbranih orodij strojnega učenja, usposobljenost za uporabo in interpretacijo metod za evalvacijo rezultatov.

Mastering of selected machine learning methods and techniques, the capability of practical use of selected machine learning techniques, and the
capability of using and interpreting the methods for result evaluation.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminar, konzultacije, individualno delo

Lectures, seminar, consultancy, individual work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Pisni izpit
50
Written exam
Seminarska naloga
25
Seminar work
Ustni zagovor seminarske naloge
25
Oral defense of the seminar work
Reference nosilca / Lecturer's references:
1. ŽNIDARŠIČ, Martin, OSOJNIK, Aljaž, RUPNIK, Peter, ŽENKO, Bernard. Improving effectiveness of a coaching system through preference learning. Technologies. 2022, vol. 10, no. 1, str. 24-1-24-14. ISSN 2227-7080. DOI: 10.3390/technologies10010024.
2. FERJANČIČ, Urša, ICHEV, Riste, LONČARSKI, Igor, MONTARIOL, Syrielle, PELICON, Andraž, POLLAK, Senja, SITAR ŠUŠTAR, Katarina, TOMAN, Aleš, VALENTINČIČ, Aljoša, ŽNIDARŠIČ, Martin. Textual analysis of corporate sustainability reporting and corporate ESG scores. International review of financial analysis. [Print ed.]. Nov. 2024, vol. 96, part b, article no. 103669, 15 str. ISSN 1057-5219. Repozitorij Univerze v Ljubljani – RUL, DOI: 10.1016/j.irfa.2024.103669.
3. ŽENKO, Bernard, ŽNIDARŠIČ, Martin, KONTIĆ, Davor, BOHANEC, Marko. Multi-criteria assessment of sustainable mobility of employees. Journal of decision systems. [in press] 2024, vol. 33, iss. , str. 1-14, ilustr. ISSN 2116-7052. https://www.tandfonline.com/doi/full/10.1080/12460125.2024.2349454, DOI: 10.1080/12460125.2024.2349454.
4. STROJNIK, Lidija, STOPAR, Matej, ZLATIĆ, Emil, KOKALJ SINKOVIČ, Doris, NAGLIČ GRIL, Mateja, ŽENKO, Bernard, ŽNIDARŠIČ, Martin, BOHANEC, Marko, BOSHKOSKA, Biljana Mileva, LUŠTREK, Mitja, GRADIŠEK, Anton, POTOČNIK, Doris, OGRINC, Nives. Authentication of key aroma compounds in apple using stable isotope approach. Food chemistry. [Print ed.]. 2019, vol. 277, str. 766-773. ISSN 0308-8146. DOI: 10.1016/j.foodchem.2018.10.140.
5. ŽNIDARŠIČ, Martin, ŽENKO, Bernard, OSOJNIK, Aljaž, BOHANEC, Marko, PANOV, Panče, BURGER, Helena, MATJAČIĆ, Zlatko, DEBELJAK, Mojca. Multi-criteria modelling approach for ambient assisted coaching of senior adults. V: DIETZ, Jan L. G. (ur.), AVEIRO, David (ur.), FILIPE, Joaquim (ur.). Proceedings of the 11th International joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2019, September 17-19, 2019, Vienna, Austria. Volume 2, KEOD. [S. l.]: SCITEPRESS = Science and Technology Publications, 2019. Str. 87-93, ilustr. ISBN 978-989-758-382-7.