Učni načrt predmeta

Predmet:
Podatkovno rudarjenje in odkrivanje zakonitosti
Course:
Data Mining and Knowledge Discovery
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 3. stopnja Tehnologije znanja 1 1
Information and Communication Technologies, 3rd cycle Knowledge Technologies 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
IKT3-722
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Nada Lavrač
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisits:
Vsebina:
Content (Syllabus outline):
Temeljna literatura in viri / Readings:
Cilji in kompetence:
Objectives and competences:
Predvideni študijski rezultati:
Intendeded learning outcomes:
Metode poučevanja in učenja:
Learning and teaching methods:
Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Pisni ali ustni izpit
40 %
Written or oral exam
Seminarska naloga
30 %
Seminar work
Ustni zagovor seminarske naloge
30 %
Oral defense of the seminar work
Reference nosilca / Lecturer's references:
1. J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of Rule Learning. Springer, 2012.
2. A. Vavpetič, V. Podpečan, and N. Lavrač, Semantic subgroup explanations. J. Intell. Inf. Syst. 42(2): 233-254, 2014.
3. N. Lavrač, V. Podpečan, and M. Robnik-Šikonja: Representation Learning: Propositionalization and Embeddings, Springer, 2021.
4. B. Sluban, D. Gamberger, and N. Lavrač, Ensemble-based noise detection: noise ranking and visual performance evaluation. Data Min. Knowl. Discov. 28(2): 265-303, 2014.
5. M. Grčar, N. Trdin, and N. Lavrač. A methodology for mining document-enriched heterogeneous information networks. The Computer Journal, 56(3): 321-335, 2013.