Učni načrt predmeta

Predmet:
Mikroskopija nanomaterialov
Course:
Microscopy of Nanomaterials
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 3. stopnja / 1 1
Nanosciences and Nanotechnologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO3-812
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Maja Remškar
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključena izobrazba druge stopnje ali univerzitetna izobrazba s področja naravoslovja ali tehnologije.

Completed second-cycle education or university education from natural sciences or technology.

Vsebina:
Content (Syllabus outline):

Morfološke in kristalografske lastnosti organskih in anorganskih nanodelcev: vlaken, iglic, kroglastih nanodelcev, ki so vsaj v eni smeri manjši od 100 nm. Metode za zbiranje in sortiranje nanodelcev po velikosti in masi v tekočih in plinastih medijih (večstopenjski impaktorji, elektrostatična klasifikacija).

Specifične fizikalne in kemijske lastnosti nizkodimenzionalnih sistemov: samourejanje, aglomeriranje, rekonstrukcije, relaksacije, fazni prehodi, kvantni efekti. Sinteza ekvivalentnih nanodelcev v laboratorijskih pogojih v zadostnih količinah za uporabo makroskopskih karakterizacijskih metod. Detekcija kemijske aktivnosti pri zmanjševanju dimenzij nanodelcev z ozirom na biokompatibilnost oz. toksičnost.

Metode za karakterizacijo nanomaterialov: visokoločljivostna presevna elektronska mikroskopija, vrstična elektronska mikroskopija, vrstična tunelska mikroskopija in spektroskopija, mikroskopija na atomsko silo, spektroskopija elektronskih izgub energije. Pregled osnovnih metod za kontrolo namenske proizvodnje oz. nenamenske emisije nanodelcev v delovno in splošno okolje.

Obravnavani primeri bodo prilagojeni ciljem in vsebini raziskovalnega projekta podiplomca.

Morphological and crystallographic properties of organic and inorganic nanoparts: fibres, needles, spherical nanoparts which are smaller than 100 nm at least in one direction. Methods of collecting and sorting of nanoparts by size and mass in crystal and gaseous media (multistage impactors, electrostatic classification).

Specific physical and chemical properties of low-dimensional systems. Self-arrangement, agglomeration, reconstructions, relaxations, phase transfers, quantum effects. Synthesis of equivalent nanoparticles in laboratory conditions in adequate quantities for use of macroscopic characterization methods. Detection of chemical activity in reducing dimensions of nanoparticles regarding biocompatibility and/or toxicity.

Methods of characterization of nanomaterials: high-resolution transmission electronic microscopy, scanning electronic microscopy, scanning tunnel microscopy and spectroscopy, atomic force microscopy, spectroscopy of electronic energy losses. Overview of the basic methods for monitoring of intentional generation or accidental emission of nanoparticles into the occupational and general environment.

The cases under consideration will be adapted to the objectives and content of the postgraduate student's research project.

Temeljna literatura in viri / Readings:

»Handbook of Microscopy for Nanotechnology«, N. Yao, Z.L. Wang (editors), Kluwer Academic Publisher, 2005. (https://link.springer.com/book/10.1007/1-4020-8006-9)
S.C. Wang and R.C. Flagan, »Scanning electrical mobility spectrometer«, Aerosol Sci. And Tech. 13, 230-
240, 1990.
»Nanomaterials: Inorganic and Bioinorganic Perspectives«, C.M. Lukehart and R.A. Scott (editors) John
Wiley and Sons Ltd., 2008.
C.J. Chen: »Introduction to scanning tunnelling microscopy« (Oxford Series in Optical and Imaging
Sciences, 4), Oxford University Press, 1993.
D.B. Williams, C.B. Carter: »Transmission electron microscopy: A textbook for material science«, Kluwer
Academic/Plenum Publishers, 1997.

Cilji in kompetence:
Objectives and competences:

Študentje spoznajo specifične fizikalne in kemijske zakonitosti, povezane z nanometrskimi dimenzijami, metode za merjenje nanodelcev v tekočih in plinastih medijih ter mikroskopske metode za njihovo morfološko, fizikalno in kemijsko identifikacijo.

The students learn specific physical and chemical laws related to nanometric dimensions, methods of measurement of nanoparticles in liquid and gaseous mediums and microscopic methods for their morphological, physical and chemical identification.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Znanje in razumevanje:
- razumevanje sodobnih mikroskopskih metod
pri karakterizaciji strukture nanomaterialov.

Splošne sposobnosti:
- obvladanje raziskovalnih metod, postopkov in procesov,
- razvoj kritične in samokritične presoje,
- razvoj komunikacijskih sposobnosti in spretnosti, posebej komunikacije v mednarodnem okolju,
- sodelovanje, delo v skupini (v mednarodnem okolju).

Predmetne sposobnosti:
- predmet pripravlja študente za uporabo znanja s področja sodobnih mikroskopskih metod pri karakterizaciji strukture nanomaterialov.

Knowledge and understanding:
- the student will understand modern microscopic methods for the characterization of the structure of nanomaterials.

General learning outcomes:
- the students will master research methods, procedures, and processes,
- the students will develop critical thinking,
- the students will develop communication skills to present research achievements in the international environment,
- cooperation, work in teams (in international environment).

Course-specific learning outcomes:
- this course prepares students to apply knowledge of modern microscopic methods for the characterization of the structure of nanomaterials.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminarji, konzultacije.

Lectures, seminar work, consultations.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminar
50 %
Seminar
Ustni izpit
50 %
Oral exam
Reference nosilca / Lecturer's references:
1. PIRKER, Luka, VIŠIĆ, Bojana, KOVAČ, Janez, ŠKAPIN, Srečo D., REMŠKAR, Maja. Synthesis and characterization of tungsten suboxide W n O 3 n − 1 nanotiles. Nanomaterials. [Online ed.]. 2021, vol. 11, no. 8, str. 1985-1-1985-12. DOI: 10.3390/nano11081985. [COBISS.SI-ID 72209411]
2. REINHARD, Simon, PIRKER, Luka, BÄUML, Christian, REMŠKAR, Maja, HÜTTEL, Andreas K. Coulomb blockade spectroscopy of a M o S 2 nanotube. Physica status solidi. Rapid research letters. [Online ed.]. 2019, vol. 13, no. 11, str. 1900251-1-1900251-9. DOI: 10.1002/pssr.201900251
3. LIU, Maomao, REMŠKAR, Maja, et al. Enhanced carrier transport by transition metal doping in W S 2 field effect transistors. Nanoscale. 2020, vol. 12, no. 33, str. 17253-17264. DOI: 10.1039/d0nr01573c.
4. KAZANOV, D. R., REMŠKAR, Maja, et al. Multiwall M o S 2 tubes as optical resonators. Applied physics letters. [Print ed.]. 2018, vol. 113, no. 10, str. 101106-1-101106-5. DOI: 10.1063/1.5047792.
5. PALETTI, Paolo, FATHIPOUR, Sara, REMŠKAR, Maja, SEABAUGH, Alan. Quantitative, experimentally-validated, model of M o S 2 nanoribbon Schottky field-effect transistors from subthreshold to saturation. Journal of applied physics. 2020, vol. 127, no. 6, str. 065705-1-065705-10. DOI: 10.1063/1.5127769