Učni načrt predmeta

Predmet:
Sodobni IKT pristopi
Course:
Contemporary ICT Approaches
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 2. stopnja / 1 1
Information and Communication Technologies, 2nd cycle / 1 1
Vrsta predmeta / Course type
Obvezni / Mandatory
Univerzitetna koda predmeta / University course code:
IKT2-873
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
izr. prof. dr. Marko Debeljak
Sodelavci / Lecturers:
izr. prof. dr. Aneta Ivanovska
Jeziki / Languages:
Predavanja / Lectures:
slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študijski program prve stopnje s področja naravoslovja, tehnike ali računalništva.

Student must complete first-cycle study programmes in natural sciences, technical disciplines or computer science.

Vsebina:
Content (Syllabus outline):

Študenti se bodo seznanili z aktualnimi vsebinami študijskih področji študijskega programa druge stopnje informacijskih in komunikacijskih tehnologij (tehnologije znanja, inteligentni sistemi in robotika, komunikacijske tehnologije, računalniške strukture in sistemi, napredne internetne tehnologije, digitalna transformacija). Pregled izbranih IKT področij bo podan na sistematičen način, ki bo vključeval pregled razvoja področja, aktualne raziskovalne rezultate ter raziskovalne izzive.

Students will get an overview of the contemporary topics of the second-level study program of Information and Communication Technologies (knowledge technologies, intelligent systems and robotics, communication technologies, computer structures and systems, advanced Internet technologies, digital transformation). Review of the selected ICT areas will be presented in a systematic way, which will include a review of the development of the area, current research results and new research challenges.

Temeljna literatura in viri / Readings:

Izbrani članki s področja obravnavanih vsebinskih področji informacijskih in komunikacijskih tehnologij
(tehnologije znanja, inteligentni sistemi in robotika, komunikacijske tehnologije, računalniške strukture in
sistemi, napredne internetne tehnologije, digitalna transformacija). / Selected articles in the field of
information and communication technologies (knowledge technologies, intelligent systems and robotics,
communication technologies, computer structures and systems, advanced Internet technologies, digital
transformation).

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je pridobiti celostni pregled vsebin
vseh modulov študijskega programa IKT2 z vidika
njihovega dosedanjega razvoja, trenutnega stanja
raziskav in njihovega bodočega razvoja.

Pomemben cilj je pridobiti poznavanje tematik
celotnega študijskega programa ter s tem
zagotoviti širino znanja, nujno potrebnega za
pravilno umestitev konkretnega raziskovalnega
dela študenta v širše raziskovalno področje ter
uspešno povezovanje z drugimi raziskovalnimi
področji.

The aim of the course is to obtain a comprehensive
overview of the content of all the modules of the
ICT2 study program in terms of its development,
research state of the art and its future development.

An important goal is to obtain a comprehensive
understanding of the topics of the entire study
program, thus ensuring broadness of the knowledge that is indispensable for placing the student's own research in the broader ICT research area and its successful integration with other research fields.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Celosten pregled študijskega področja,
razumevanje dosedanjega razvoja, trenutnega
stanja in usmeritev bodočega razvoja področja.
Študenti bodo tako pridobili široko znanje o IKT in sposobnost suverenega komuniciranja tako znotraj področja raziskav IKT kot tudi z drugimi
raziskovalnimi področji.

Comprehensive overview of the study field,
understanding of its development, its state-of-the-art and directions for future development of the field. Students will thus acquire broad knowledge of ICT and the ability of competent communication both within the field of ICT and with other research areas.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminar, konzultacije, druge metode

Lectures, seminar, consultations, other methods

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Pisni izpit
100 %
Written exam
Reference nosilca / Lecturer's references:
1. M. Debeljak, A. Ficko, and R. Brus, 2016 The use of habitat and dispersal models in protecting European black poplar (Populus nigra L.) from genetic introgression in Slovenia. Biological Conservation, ISSN 0006-3207. [Print ed.], vol. 184, str. 310-319, 2015.
2. A. Trajanov, V. Kuzmanovski, F. Leprince,, B. Real, A. Dutertre, J. Maillet-Mezeray, S. Džeroski, M. Debeljak, 2015. Estimating drainage periods for agricultural fields from measured data: Data mining methodology and a case study (La Jaillière – France). Irrig. Drain. 64, 703-516.V. Kuzmanovski, A. Trajanov, F. Leprince, S. Džeroski, and M. Debeljak, Modeling water outflow from tile-drained agricultural fields. Science of the total environment, vol. 505, str. 390-401.
3. T. Jaklič, L. Juvančič, S. Kavčič, and M. Debeljak, Complementarity of socio-economic and emergy evaluation of agricultural production systems: the case of Slovenian dairy sector. Ecological economics, vol. 107, str. 469-481, 2014.
4. M. Debeljak, A. Poljanec, and B. Ženko, Modelling forest growing stock from inventory data: a data mining approach. Ecological indicators, vol. 41, str. 30-39, 2014.
5. J. Levatić, D. Kocev, M. Debeljak, and S. Džeroski, Community structure models are improved by exploiting taxonomic rank with predictive clustering trees. Ecological modelling, 11 str., 2014.